Browse > Article
http://dx.doi.org/10.5713/ajas.14.0607

Nanotechnology in Meat Processing and Packaging: Potential Applications - A Review  

Ramachandraiah, Karna (Department of Animal Science and Functional Food Research Center, Chonnam National University)
Han, Sung Gu (Department of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience and Technology, Konkuk University)
Chin, Koo Bok (Department of Animal Science and Functional Food Research Center, Chonnam National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.2, 2015 , pp. 290-302 More about this Journal
Abstract
Growing demand for sustainable production, increasing competition and consideration of health concerns have led the meat industries on a path to innovation. Meat industries across the world are focusing on the development of novel meat products and processes to meet consumer demand. Hence, a process innovation, like nanotechnology, can have a significant impact on the meat processing industry through the development of not only novel functional meat products, but also novel packaging for the products. The potential benefits of utilizing nanomaterials in food are improved bioavailability, antimicrobial effects, enhanced sensory acceptance and targeted delivery of bioactive compounds. However, challenges exist in the application of nanomaterials due to knowledge gaps in the production of ingredients such as nanopowders, stability of delivery systems in meat products and health risks caused by the same properties which also offer the benefits. For the success of nanotechnology in meat products, challenges in public acceptance, economics and the regulation of food processed with nanomaterials which may have the potential to persist, accumulate and lead to toxicity need to be addressed. So far, the most promising area for nanotechnology application seems to be in meat packaging, but the long term effects on human health and environment due to migration of the nanomaterials from the packaging needs to be studied further. The future of nanotechnology in meat products depends on the roles played by governments, regulatory agencies and manufacturers in addressing the challenges related to the application of nanomaterials in food.
Keywords
Nanotechnology; Nanomaterials; Meat Products; Application; Challenges; Risks;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brody, A. L., B. Bugusu, J. H. Han, C. K. Sand, and T. H. Mchugh. 2008. Innovative food packaging solutions. J. Food Sci. 73:107-116.   DOI   ScienceOn
2 Borm, P. J. A., D. Robbins, S. Haubold, T. Kuhlbusch, H. Fissan, K. Donaldson, R. Schins, V. Stone, W. Kreyling, J. Lademann, J. Krutmann, D. Warheit, and E. Oberdorster. 2006. The potential risks of nanomaterials: A review carried out for ECETOC. Part. Fibre Toxicol. 3:11.   DOI
3 Bouwmeester, H., S. Dekkers, M. Y. Noordam, W. I. Hagens, A. S. Bulder, C. de Heer, T. S. E. Voorde, S. W. Wijnhoven, H. J. Marvin, and A. J. Sips. 2009. Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharmacol. 53:52-62.   DOI   ScienceOn
4 Bouwmeester, H. and H. J. P. Marvin. 2010. Potential risks of nanofood to consumers. In: Nanotechnologies in Food (Eds. Q. L. Chaudhry, L. Castle, and R. Watkins). Royal Society of Chemistry Publishers, Cambridge, UK. pp. 134-140.
5 Carlson, C., S. M. Hussain, A. M. Schrand, L. K. Braydich-Stolle, K. L. Hess, R. L. Jones, and J. J. Schlager. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 112:13608-13619.   DOI   ScienceOn
6 Carrero-Sanchez, J. C., A. L. Elias, R. Mancilla, G. Arrellin, H. Terrones, J. P. Laclette, and M. Terrones. 2006. Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 6:1609-1616.   DOI   ScienceOn
7 Chaudhry, Q., M. Scotter, J. Blackburn, B. Ross, A. Boxall, and L. Castle. 2008. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. 25:241-258.   DOI   ScienceOn
8 Chaudhry, Q., R. Watkins, and L. Castle. 2010. Knowns, unknowns and unknown unknowns In: Nanotechnologies in Food (Eds. Q. L. Chaudhry, L. Castle, and R. Watkins). Royal Society of Chemistry Publishers, Cambridge, UK. pp. 212-214.
9 Corley, E., D. A. Scheufele, and Q. Hu. 2009. Of risks and regulations: how leading U.S. nanoscientists form policy stances about nanotechnology. J. Nanopart. Res. 11:1573-1585.   DOI
10 Chen, L. and M. Subirade. 2005. Chitosan/$\beta$-lactoglobulin core-shell nanoparticles as nutraceutical carriers. Biomaterials 26:6041-6053.   DOI   ScienceOn
11 Chen, M. F., Y. P. Lin, and T. J. Cheng. 2013. Public attitudes toward nanotechnology applications in Taiwan. Technovation 33:88-96.   DOI   ScienceOn
12 Cockburn, A., R. Bradford, N. Buck, A. Constable, G. Edwards, B. Haber, P. Hepburn, J. Howlett, F. Kampers, C. Klein, M. Radomski, H. Stamm, S. Wijnhoven, and T. Wildeman. 2012. Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem. Toxicol. 50:2224-2242.   DOI   ScienceOn
13 Cubukcua, M., S. Timurb, and U. Anik. 2007. Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection. Talanta 74:434-439.   DOI   ScienceOn
14 Cushen, M., J. Kerry, M. Morris, M. Cruz-Romero, and E. Cummins. 2012. Nanotechnologies in the food industry - Recent developments, risks and regulation. Trends Food Sci. Technol. 24:30-46.   DOI   ScienceOn
15 Danhier, F., E. Ansorena, J. M. Silva, R. Coco, A. L. Breton, and V. Preat. 2012. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 161:505-522.   DOI   ScienceOn
16 Dias. M. V., N. F. Soares, S. V. Borges, M. M. de Sousa, C. A. Nunes, I. R. N. de Oliveira, and E. A. A. Medeiros. 2013. Use of allyl isothiocyanate and carbon nanotubes in an antimicrobial film to package shredded, cooked chicken meat. Food Chem. 141:3160-3166.   DOI   ScienceOn
17 de Azeredo, H. M. C. 2009. Nanocomposites for food packaging applications. Food Res. Int. 42:1240-1253.   DOI   ScienceOn
18 Diallo, M. and C. J. Brinker. 2011. Nanotechnology for sustainability: Environment, water, food, minerals, and climate. In: Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and outlook (Eds. M. C. Roco, C. A. Mirkin, and M. C. Hersam). Springer, London, UK. pp. 229.
19 Fedotova, A. V., A. G. Snezhko, O. A. Sdobnikova, L. G. Samoilova, T. A. Smurova, A. A. Revina, and E. B. Khailova. 2010. Packaging materials manufactured from natural polymers modified with silver nanoparticles. Int. Polym. Sci. Technol. 37:59-64.
20 Duncan, T. V. 2011. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363:1-24.   DOI   ScienceOn
21 EFSA. 2009. Scientific opinion of the scientific committee. The potential risks arising from nanoscience and nanotechnologies on food and feed safety. EFSA J. 958:1-39.
22 Evans, H. M. 2009. Nanotechnology enabled sensing. Report of the national nanotechnology workshop, National Nanotechnolo-gical Initiative workshop. pp. 9, 27-34.
23 Fernandez, A., S. T. Giner, and J. M. Lagaron. 2009. Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocol. 23:1427-1432.   DOI   ScienceOn
24 Gaskell, G., T. T. Eyck, J. Jackson, and G. Veltri. 2005. Imagining nanotechnology: cultural support for technological innovation in Europe and the United States. Public Underst. Sci. 14:81-90.   DOI
25 Flanagan, J. and H. Singh. 2006. Microemulsions: A potential delivery system for bioactives in food. Crit. Rev. Food Sci. Nutr. 46:221-237.   DOI   ScienceOn
26 FSAI. 2008. The relevance for food safety of applications of nanotechnology in the food and feed industries. Food Safety Authority of Ireland. Dublin, Ireland. pp. 11.
27 Gaskell, G., M. W. Bauer, J. Durant, and N. C. Allum. 1999. Worlds apart? The reception of genetically modified foods in Europe and the US. Science, 285:384-387.   DOI   ScienceOn
28 Gurr, J. R., A. S. Wang, C. H. Chen, and K. Y. Jan. 2005. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 213:66-73.   DOI   ScienceOn
29 Graveland-Bikker, J. F. and C. G. de Kruif. 2006. Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci. Technol. 17:196-203.   DOI   ScienceOn
30 Gruere, G. P. 2012. Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37:191-198.   DOI   ScienceOn
31 Gupta, A. K. and M. Gupta. 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995-4021.   DOI   ScienceOn
32 He, C. X., Z. G. He, and J. Q. Gao. 2010. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin. Drug Deliv. 7:445-460.   DOI   ScienceOn
33 Huang, Y., S. Chen, X. Bing, C. Gao, T. Wang, and B. Yuan. 2011. Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packaging Technol. Sci. 24:291-297.   DOI   ScienceOn
34 Helmut Kaiser Consultancy. 2009. Study: nanotechnology in food and food processing industry worldwide 2003-2006-2010-2015. HKC. http://www.hkc22.com/nanomarkets.html. Accessed February 6, 2014.
35 HOL (House of Lords). 2010. Nanotechnologies and food, volume I: Report. House of Lords, Science and technology committee, 1st report of Session 2009-2010, HL Paper 22-I, the Stationery Office, London, USA. pp. 12, 51-52.
36 Huang, Q., H. Yu, and Q. Ru. 2010. Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci. 75:50-57.   DOI   ScienceOn
37 IFIC (International Food Information Council). 2006. Functional foods. http://ific.org/nutrition/functional/indcx.cfm. Accessed March 14, 2014.
38 Kim, Y. S., J. S. Kim, H. S. Cho, D. S. Rha, J. M. Kim, J. D. Park, B. S Choi, R. Lim, H. K. Chang, Y. H. Chung, I. H. Kwon, J. Jeong, B. S. Han, and I. J. Yu. 2008. Twenty eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 20:575-583.   DOI   ScienceOn
39 Joe, M. M., P. S. Chauhan, K. Bradeeba, C. Shagol, P. K. Sivakumaar, and T. Sa. 2012. Influence of sunflower oil based nanoemulsion (AUSN-4) on the shelf life and quality of Indo-Pacific king mackerel (Scomberomorus guttatus) steaks stored at $20^{\circ}C$. Food Control 23:564-570.   DOI   ScienceOn
40 Kotov, N. A. 2003. Layer-by-layer assembly of nanoparticles and nanocolloids: intermolecular interactions, structure and materials perspective. In: Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials (Eds. G. Decher and J. B. Schlenoff). Wiley-VCH, Weinheim, Germany. pp. 207-243.
41 Kim, J. S., E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho. 2007. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3: 95-101.   DOI   ScienceOn
42 Kuzma, J., J. Romanchek, and A. Kokotovich. 2008. Upstream oversight assessment for agrifood nanotechnology: A case studies approach. Risk Anal. 28:1081-1098.
43 Lee, K. T. 2010. Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials. Meat Sci. 86:138-150.   DOI   ScienceOn
44 Linton, J. D. and S. T. Walsh. 2008. A theory of innovation for process-based innovations such as nanotechnology. Technol. Forecast. Soc. Change 75:583-594.   DOI   ScienceOn
45 McClements, D. J. and J. Rao. 2011. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 51:285-330.   DOI   ScienceOn
46 Lovenstam, G., H. Rauscher, G. Roebben, B. Sokull Kluttgen, N. Gibson, J. P. Putaud, and H. Stamm. 2010. Considerations on a Definition of Nanomaterial for Regulatory Purposes. Joint Research Center of the European Commission (JRC) Reference Reports. Publication Office of the European Union, Luxembourg. pp. 17-18.
47 Lovric, J., H. S. Bazzi, Y. Cuie, G. R. A. Fortin, F. M. Winnik, and D. Maysinger. 2005. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 83:377-385.   DOI
48 Moller, M., U. Eberle, A. Hermann, K. Moch, and B. Stratmann. 2009. Nanotechnology in the food sector. Zurich: TA-SWISS. pp. 47.
49 Marra, J., M. Voetz, and H. J. Kiesling. 2010. Monitor for detecting and assessing exposure to airborne nanoparticles. J. Nanopart. Res. 12:21-37.   DOI
50 Mills, A. 2005. Oxygen indicator and intelligent inks for packaging food. Chem. Soc. Rev. 34: 1003-1011.   DOI   ScienceOn
51 Moraru, C. I., C. P. Panchapakesan, Q. Huang, P. Takhistov, S. Liu, and J. L. Kokini. 2003. Nanotechnology: A new frontier in food science. Food Technol. 57:24-29.
52 Moraru, C. I., Q. Huang, P. Takhistov, H. Dogan, and J. L. Kokini. 2009. Food nanotechnology: current developments and future prospects. Global. Issues. Food Sci. Technol. 21:369-399.
53 Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346-2353.   DOI   ScienceOn
54 O'Brien, N. and E. Cummins. 2010. Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials. J. Environ. Sci. Health., Part A. 45: 992-1007.   DOI   ScienceOn
55 Neo, Y. P., S. Ray, J. Jin, M. Gizdavic-Nikolaidis, M. K. Nieuwoudt, D. Liu, and S. Y. Quek. 2013. Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein-gallic acid system. Food Chem. 136:1013-1021.   DOI   ScienceOn
56 NSI. 2012. NSI white paper: Nanotechnology for sensors and sensors for Nanotechnology: Improving and protecting health, safety, and the environment, Nanotechnology Signature Initiative. NSI white paper 1-11.
57 Ozimek, L., E. Pospiech, and S. Narine. 2010. Nanotechnology is food and meat processing. Acta Sci. Pol. Technol. Aliment. 9:401-412.
58 NSI. 2013. Nanotechnology for sensors and sensors for Nanotechnology: Improving and protecting health, safety, and the environment. Nanotechnology Signature Initiative. http://www.nano.gov/node/849. Accessed March 17, 2014.
59 Okutan, N., P. Terzi, and F. Altay. 2014. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll. 39:19-26.   DOI
60 Olmedilla-Alonsoa, B., F. Jimenez-Colmeneroa, and F. J. Sanchez-Muniz. 2013. Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Sci. 95:919-930.   DOI   ScienceOn
61 Panea, B., G. Ripoll, J. Gonzalez, A. Fernandez-Cuello, and P. Alberti. 2013. Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. J. Food Eng. 123:104-112.
62 Picouet, P. A., A. Fernandez, C. E. Realini, and E. Lloret. 2014. Influence of PA6 nanocomposite films on the stability of vacuum-aged beef loins during storage in modified atmospheres. Meat Sci. 96:574-580.   DOI   ScienceOn
63 Semo, E., E. Kesselman, D. Danino, and Y. D. Livney. 2007. Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocoll. 21:936-942.   DOI   ScienceOn
64 Rhim, J. W., H. M. Park, and C. S. Ha. 2013. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38:1629-1652.   DOI   ScienceOn
65 Salminen, H., K. Herrmann, and J. Weiss. 2013. Oil-in-water emulsions as a delivery system for n-3 fatty acids in meat products. Meat Sci. 93:659-667.   DOI   ScienceOn
66 Siegrist, M., M. E. Cousin, H. Kastenholz, and A. Wiek. 2007. Public acceptance of nanotechnology foods and food packaging: The influence of affect and trust. Appetite 49:459-466.   DOI   ScienceOn
67 Sharma, V., R. K. Shukla, N. Saxena, D. Parmar, M. Das, and A. Dhawan. 2009. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol. Lett. 185:211-218.   DOI   ScienceOn
68 Shibata, T. 2002. Method for producing green tea in microfine powder. United States Patent US6416803B1.
69 Shimoni, E. 2009. Nanotechnology for foods: delivery systems. In:IUFoST World Congress Book: Global Issues in Food Sci. Technol. pp. 411-424.
70 Siegrist, M., N. Stampfli, H. Kastenholz, and C. Keller. 2008. Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging. Appetite 51:283-290.   DOI   ScienceOn
71 Silvestre, C., D. Duraccio, and S. Cimmino. 2011. Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 36:1766-1782.   DOI   ScienceOn
72 Tan, C. P. and M. Nakajima. 2005. Beta Carotene nanodispersions:Preparation, characterization and stability evaluation. Food Chem. 92:661-671.   DOI   ScienceOn
73 Simon, P., Q. Chaudhry, and D. Bakos. 2008. Migration of engineered nanoparticles from polymer packaging to food - a physicochemical view. J. Food Nutr. Res. 47:105-113.
74 Spence, A. and E. Townsend. 2006. Examining consumer behavior toward genetically modified (GM) food in Britain. Risk Anal. 26:657-670.   DOI   ScienceOn
75 Troy, D. J. and J. P. Kerry. 2010. Consumer perception and the role of science in the meat industry. Meat Sci. 86:214-226.   DOI   ScienceOn
76 Villamizar, R., A. Maroto, R. F. Xavier, I. Inza, and M. Figueras. 2008. Fast detection of Salmonella Infantis with carbon analytical nanotechnology for food analysis 17 nanotube field effect transistors. Biosens Bioelectron. 24:279-283.   DOI   ScienceOn
77 Ultrafine and nanoparticle monitors. 2014. Philips Co. Inc. http://www.aerasense.com/index.php?pageID=3. Accessed March 13, 2014.
78 Underwood, C. and A. W. V. Eps. 2012. Nanomedicine and veterinary science: The reality and the practicality. Vet. J. 193:12-23.   DOI   ScienceOn
79 USDA. 2008. Food safety information: additives in meat and poultry products. United States Department of Agriculture. http://www.fsis.usda.gov/wps/portal/fsis/topics/food-safetyeducation/get-answers/food-safety-fact-sheets/foodlabeling/additives-in-meat-and-poultry-products/additives-inmeat-and-poultry-products. Accessed November 3, 2014.
80 Weiss, J., P. Takhistov, and J. Mcclements. 2006. Functional materials in food nanotechnology. J. Food Sci. 71:107-116.   DOI   ScienceOn
81 Weiss, J., M. Gibis, V. Schuh, and H. Salminen. 2010. Advances in ingredient and processing systems for meat and meat products. Meat Sci. 86:196-213.   DOI   ScienceOn
82 Yusop, S. M., M. G. O'Sullivan, M. Preuss, H. Weber, J. F. Kerry, and J. P. Kerry. 2012. Assessment of nanoparticle paprika oleoresin on marinating performance and sensory acceptance of poultry meat. LWT Food Sci. Technol. 46: 349-355.   DOI   ScienceOn
83 Yam, K. L., P. T. Takhistov, and J. Miltz. 2005. Intelligent packaging: Concepts and applications. J. Food Sci. 70:1-10.
84 Yang, M, Y. Kostov, and A. Rasooly. 2008. Carbon nanotubes based optical immunodetection of Staphylococcal Enterotoxin B (SEB) in food. Int. J. Food Microbiol. 127:78-83.   DOI   ScienceOn
85 Zhu, K., S. Huang, W. Peng, H. Qian, and H. Zhou. 2010. Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Res. Int. 43:943-948.   DOI   ScienceOn
86 Young, J. F., M. Therkildsen, B. Ekstrand, B. N. Che, M. K. Larsen, N. Oksbjerg, and J. Stagsted. 2013. Novel aspects of health promoting compounds in meat. Meat Sci. 95:904-911.   DOI   ScienceOn
87 Zhang, W., J. Zhang, Q. Jiang, and W. Xia. 2013. The hypolipidemic activity of chitosan nanopowder prepared by ultrafine milling. Carbohydr. Polym. 95:487-491.   DOI   ScienceOn
88 Zhao, X., Z. Yang, G. Gai, and Y. Yang. 2009. Effect of superfine grinding on properties of ginger powder. J. Food Eng. 91:217-222.   DOI   ScienceOn
89 Abdou, E. S., A. S. Osheba, and M. A. Sorour. 2012. Effect of chitosan and chitosan-nanoparticles as active coating on microbiological characteristics of fish fingers. Int. J. Appl. Sci. Technol. 2:158-169.
90 Avella, M., J. J. De Vlieger, M. E. Errico, S. Fischer, P. Vacca, and M. G. Volpe. 2005. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem. 93:467-474.   DOI   ScienceOn
91 Akbarzadeh, A., R. Rezaei-Sadabady, S. Davaran, S. W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, and K. Nejati-Koshki. 2013. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8:102.   DOI   ScienceOn
92 Althues, H., J. Henle, and S. Kaskel. 2007. Functional inorganic nanofillers for transparent polymers. Chem. Soc. Rev. 36:1454-1465.   DOI   ScienceOn
93 Augustin, M. A. and P. Sanguansri. 2009. Nanostructured materials in the food industry. Adv. Food. Nutr. Res. 58:183-213.   DOI   ScienceOn
94 Borm, P. J. A. and D. Berube. 2008. A tale of opportunities, uncertainties, and risks. Nano Today 3:56-59.   DOI   ScienceOn
95 Sozer, N. and J. L. Kokini. 2009. Nanotechnology and its applications in the food sector. Trends Biotechnol. 27:82-89.   DOI   ScienceOn
96 Chaudhry, Q. and L. Castle. 2011. Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries. Trends Food Sci. Technol. 22:595-603.   DOI   ScienceOn
97 Lok, C. N., C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. Tam, J. F. Chiu, and C. M. Che. 2007. Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 12:527-534.   DOI
98 Ravichandran, M., N.S. Hettiarachchy, V. Ganesh, S.C. Ricke and S. Surendra. 2011. Enhancement of antimicrobial activities of naturally occurring phenolic compounds by nanoscale delivery against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Typhimurium in broth and chicken meat system. J. Food Safety. 31:462-471.   DOI   ScienceOn