• 제목/요약/키워드: fuel cell vehicles

검색결과 249건 처리시간 0.023초

Stack Performances of Proton Exchange Membrane Fuel Cell

  • Kho, Young-Tai;Cho, Won-Ihl;Park, Yong-Woo-
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1994년도 추계학술발표회 초록집
    • /
    • pp.14-16
    • /
    • 1994
  • The development of proton exchange membrane fuel cells(PEMFCs) with high energy efficiencies and high power densities is gaining momentum because their performance characteristics are attractive for terrestrial(power sources for electrical vehicles, stand-by power), space and underwater application[1]. Fuel cells are capable of running on non-petroleum fuels such as methanol, natural gas or hydrogen and also have major impact on improving air quality. They virtually eliminate particulates, NO$_{x}$, SO$_{x}$, and significant reduce hydrocarbons and carbon monoxide. Especially, fuel cell-battery hybrid power sources appear to be well suited to overcome both the so-called battery problem(low energy density) and the fuel cell problem(low power density)[2].[2].

  • PDF

차량용 이산화탄소 열펌프 시스템의 냉난방 성능 비교평가 (Comparative Evaluation of the Cooling and Heating Performance of a $CO_2$ Heat Pump System for Vehicles)

  • 김성철;김민수
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.126-131
    • /
    • 2009
  • A $CO_2$ heat pump system was designed for both cooling and heating in the cabin of electric vehicles, hybrid vehicles or fuel cell vehicles, In this study, the performance characteristics of the heat pump system without any supplementary heating device were analyzed and the heating performance was compared with the cooling performance for various operating conditions. Experiments were carried out by changing the speed of electric drive compressor, the air flow rate of interior heat exchanger and the air inlet temperature and speed of exterior heat exchanger. Therefore, the cooling/heating capacities and the corresponding COPs are quantified. Also, the heat pump system showed an improved performance for the cooling operation and the heating operation. In this study, the experimental results can be used to evaluate the effect of system design changes on system performance as well as the development of a highly efficient heat pump system.

친환경 자동차의 전자파 방사 노이즈 특성 분석 (Analysis of Electro-magnetic Interference Noise for Eco-friendly Vehicle)

  • 김해성;용부중
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.76-81
    • /
    • 2011
  • Fossil fuel, the energy source of internal combustion engine automobiles, is limited in resource and has caused environmental issues for decades. Accordingly, automobile manufacturers from many countries around the world are developing or producing eco-friendly vehicles that utilize alternative sources of energy. These vehicles are equipped with many electronic and electrical components which operate on high voltage and/or large current that were not used in conventional combustion engine automobiles. In this paper, in order to analyze the electro-magnetic interference noise, electric vehicles and fuel cell electric vehicles are tested under the guidelines of KMVSS (Korean Motor Vehicle Safety Standards) as well as under test modes that are not stipulated under the guidelines.

무인항공기용 150W급 연료전지 동력원 개발 및 실증 (Development and Demonstration of 150W Fuel Cell Propulsion System for Unmanned Aerial Vehicle (UAV))

  • 양철남;김양도
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.300-309
    • /
    • 2012
  • Long endurance is a key issue in the application of unmanned aerial vehicles. This study presents feasibility test results when fuel cell system as an alternative to the conventional engine is applied for the power of the UAV after the 150W fuel cell system is developed and packaged to the 1/4 scale super cub airplane. Fuel cell system is operated by dead-end method in the anode part and periodically purged to remove the water droplet in flow field during the operation. Oxygen in the air is supplied to the stack by the two air blowers. And fuel cell stack is water cooled by cooling circuit to dissipate the heat generated during the fuel cell operation. Weight balance is considered to integrate the stack and balance of plant (BOP) in package layout. In flight performance test, we demonstrated 4 times standalone take-off and landing. In the laboratory test simulating the flight condition to quantify the energy flow, the system is analyzed in detail. Sankey diagram shows that electric efficiency of the fuel cell system is 39.2%, heat loss 50.1%, parasitic loss 8.96%, and unreacted purged gas 1.67%, respectively compared to the total hydrogen input energy. Feasibility test results show that fuel cell system is high efficient and appropriate for the power of UAV.

수소연료전지자동차 보급을 위한 정부의 역할: 한국과 일본의 사례를 중심으로 (The Role of Government to Supply Fuel Cell Electric Vehicle in Korea and Japan)

  • 손민희;남석우;김경남
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.71-82
    • /
    • 2016
  • A fuel cell electric vehicle (FCEV) could be an alternative solution to gasoline powered vehicles. The Korean and Japanese governments have played the midwifery role in the development of the FCEV industry. This study explores the difference in policy goals for FCEV between the two countries. Koreans recognized that FCEV was innovative technology and put forward the notion of technology pre-occupancy. Whereas, the Japanese government discovered that FCEV was one way to apply hydrogen mechanisms, so they identified the supply of hydrogen as one of the industries of interest, and have played the demiurge role. This study suggests that the role of government is to introduce eco-friendly vehicles, using the cases of Korean and Japanese governments, who introduced FCEV to the world first.

연료전지 자동차의 물탱크 해빙과정에 대한 수치해석적 연구 (Numerical analysis of melting process in a water tank for fuel-cell vehicles)

  • 김학구;정시영;허남건;임태원;박용선
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.74-79
    • /
    • 2006
  • Good cold start characteristics are essential for satisfactory operation of fuel cell vehicles. In this study, the melting process has been numerically investigated for a water tank frozen in cold weather The 2-D model of the tank containing ice and plate heaters was assumed and the unsteady melting process of the ice was calculated. The enthalpy method was used for the description of the melting process, and a FVM code was used to solve the problem. The feasibility study compared with other experiment showed that the developed program was able to describe the melting process well. From the numerical analysis carried out for different wall temperatures of the pate heaters, some important design factors could be found such as local overheating and pressurization in the tank.

  • PDF

연료전지 차량용 TYPE3 복합재 고압용기 개발 (Development of Hydrogen Type3 composite cylinder for Fuel Cell vehicle)

  • 정재한;조성민;김태욱;박지상;정상수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.165-168
    • /
    • 2007
  • The objective of this study is to demonstrate and commercialized for on-board fuel storage system for the hydrogen fuel cell vehicles. Type3 composite cylinder is consisting of the full wrapped composites on a seamless aluminum liner. Especially, the seamless aluminum liner has been commercialized with development of fabrication through this study. The key technologies, including design, analysis and the optimized filament winding process for 350bar composite cylinder, were established and verified with design qualification test in accordance with international standard. And the facilities for fabrication and design qualification test have been constructed.

  • PDF

수소충전소 내 연료전지용 수소연료 품질 관리 및 표준화 동향 (Current Status of Standardization for Quality Control of Hydrogen Fuel in Hydrogen Refueling Stations for Fuel Cell Electric Vehicles)

  • 김동겸;임정식;이정순
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.284-292
    • /
    • 2022
  • Hydrogen is promising a candidate for energy supporting the carbon neutrality policy for greenhouse gas reduction, which is being promoted in several countries, including Korea. Although challenging efforts-such as lowering the costs of green hydrogen production and fuel cells-remain, hydrogen fuel cell electric vehicles (FCEVs) are expected to play a significant role in the energy transition from fossil fuels to renewable energy. In line with this objective, the hydrogen FCEV working group in the International Organization for Standardization (ISO) compiled and revised international standards related to hydrogen refueling stations as of 2019. A well-established hydrogen quality management system based on the standard documents will increase the reliability of hydrogen charging stations and accelerate the use of FCEVs. In this study, among the published ISO standards and other references, the main requirements for managing charging stations and developing related techniques were summarized and explained. To respond preemptively to the growing FCEV market, a continuous hydrogen quality monitoring method suitable for use at hydrogen charging stations was proposed.

반밀폐공간에서 발생되는 차량용 수소연료탱크 폭발 실험 (An Experimental Study on the Explosion of Hydrogen Tank for Fuel-Cell Electric Vehicle in Semi-Closed Space)

  • 박진욱;유용호;김휘성
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.73-80
    • /
    • 2021
  • Recently, Korea has established a plan for the supply of hydrogen vehicles and is promoting the expansion of the supply. Risk factors for hydrogen vehicles are hydrogen leakage, jet fire, and explosion. Therefore Safety measures are necessary for this hazard. In addition, risks in semi-closed spaces such as tunnels, underground roads, and underground parking lots should be analyzed. In this study, an explosion experiment was conducted on a hydrogen tank used in a hydrogen vehicle to analyze the risk of a hydrogen vehicle explosion accident that may occur in a semi-closed space. As results, the effect on the structure and the human body was analyzed using the overpressure and impulse values for each distance generated during the explosion.

연료전지 자동차의 공기 공급계용 흡기 소음기의 최적 설계 (Design Optimization of Intake Muffler for Fuel Cell Electric Vehicle APU)

  • 김의열;이영준;이상권
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.44-52
    • /
    • 2012
  • Fuel cell electric vehicles have some noise problems due to its air processing unit which is required to feed the ambient air into the fuel cell stack. Discrete-frequency noises are radiated from a centrifugal blower due to rotor-stator interaction. Their fundamental frequency is the blade passing frequency, which is determined by the number of rotor blades and their rotating speed. To reduce such noises, multi-chamber perforated muffler has been designed. In this paper, in order to improve the transmission loss of a perforated muffler, the relationship between the impedance model of a perforated hole and its noise reduction performance is studied, and the applicability of a short-length perforated muffler to air processing unit of fuel cell system is described using acoustic simulation results and experimental data. The acoustic velocity vector across the neck of a perforated hole is very important design factor to optimize the transmission of an intake muffler. The suggested short-length perforated muffler is effective on discrete-frequency noises while keeping the volume of intake muffler minimized.