• Title/Summary/Keyword: friendly materials

Search Result 1,773, Processing Time 0.027 seconds

Development of Cosmetic Packaging for Cream Formulation with Easy Separation and Discharge (분리배출이 용이한 크림제형용 화장품 패키징 개발)

  • Sang Kyu Ryu;Ho Sang Kang;Jae Young Oh
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2023
  • The cosmetics industry faces a significant challenge in addressing the decreased recycling rate of cosmetic containers due to the composite materials used to meet consumers' aesthetic satisfaction. To address thees issues, eco-friendly packaging solutions such as refill packaging and single-material use have been developed. However, the market for eco-friendly cosmetics packaging requires a product that meets consumers' demands for aesthetics, sensitivity, and eco-friendliness while also performing as well as existing products. This study presents a solution to the challenge of the decreased recycling rate of cosmetic containers by developing a new cosmetic packaging product for cream formulations. The product features an easily separable and dischargeable internal refill container, while maintaining the design aesthetics of the external container. Through various tests, the product was shown to be of equivalent quality and performance to existing cream cosmetic packaging, with no leakage or defects observed. Furthermore, the use of a single-material polypropylene refill container is expected to contribute to the improvement of the plastic recycling rate.

Development and Utilization of Eco-friendly Products based on Hemp Fabrics (대마 기반 친환경 의류 제품의 개발 및 활용에 관한 연구)

  • Su-Hyun Kim;Hee-Sook Kim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.1
    • /
    • pp.62-71
    • /
    • 2023
  • Recently, interest in natural fabric materials that are not harmful has increased, and hemp is being studied as a new eco-friendly product. This study produced hemp fabric with improved flexibility and increased antibacterial properties by blending it with Hanji yarn. Various weaving methods were proposed to overcome the rough physical properties of hemp, and the functions of the developed products were evaluated through antibacterial tests. The mixing ratios of hemp and Hanji yarns was 50% hemp: 50% Hanji weft, 70% hemp: 30% Hanji weft, 30% hemp: 70% Hanji weft, and 100% hemp. Overall, the higher the ratio of Hanji yarn, the higher the fastness property, and the higher the ratio of hemp yarn, the higher the flexibility of the fabric, which was evaluated to be comfortable to wear. The 99.9% antibacterial properties of hemp products were considered to contribute to maintaining the health of modern people. Owing to its high intensity and high air permeability, it is considered highly usable in the production of children's clothing with a lot of activity. It was evaluated as an advantage that the disadvantage of hemp, which was limited as a material for summer clothing, was broadened to use for all seasons due to the fusion of Hanji. Otherwise, low consumer satisfaction as an outdoor wear is a disadvantage because hemp products had low elasticity and wrinkles.

Nematicidal activity of Glycyrrhiza uralensis Fisch. root extracts on Meloidogyne incognita eggs and juveniles

  • Dang-Minh-Chanh Nguyen;Thi-Hoan Luong;Van-Viet Nguyen;Woo-Jin Jung
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.388-393
    • /
    • 2023
  • This study evaluated the in vitro nematicidal activity of Glycyrrhiza uralensis root extracts (GuRE) on Meloidogyne incognita eggs and juveniles. The results showed that treatment of M. incognita eggs with 2.0 mg/mL GuRE for 5 and 10 d resulted in 64.0 and 68.1% hatch inhibition, respectively. Furthermore, the relative mortality of J2 was 96.2% after treatment with 2.0 mg/mL GuRE for 48 h. Changes in the shape of the eggs and juveniles were determined after incubation with 2.0 mg/mL GuRE for 5 d and 48 h, respectively. These preliminary results suggest that GuRE can be used as an environment-friendly bio-nematicide to control root-knot nematodes. In the future, in vivo assays should be conducted using GuRE to ascertain its potential for widespread application as a nematicide.

Recent Progress in Passive Radiative Cooling for Sustainable Energy Source

  • Park, Choyeon;Park, Chanil;Choi, Jae-Hak;Yoo, Youngjae
    • Elastomers and Composites
    • /
    • v.57 no.2
    • /
    • pp.62-72
    • /
    • 2022
  • Passive daytime radiative cooling (PDRC) is attracting increasing attention as an eco-friendly technology that can save cooling energy by not requiring an external power supply. An ideal PDRC structure should improve solar reflectance and emissivity within the atmospheric spectral window. Early designs of photonic crystal materials demonstrated the benefits of PDRC. Since then, functional arrangements of polymer-based radiative cooling materials have played an important role and are rapidly expanding. This review summarizes the known inorganic, organic, and hybrid materials for PDRC. The review also provides a complete understanding of PDRC and highlights its practical applications.

Coagulating effects of several eco-friendly coagulant materials favorable for vermicomposting sewage sludge (하수슬러지에 대한 지렁이처리법 적용에 유리한 몇 가지 친환경 응집물질의 하수슬러지에 대한 응집효과)

  • Bae, Yoon-Hwan;Park, Soon-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.1
    • /
    • pp.52-62
    • /
    • 2015
  • Coagulating effects of eco-friendly coagulant materials such as zeolite, kaolinite, loess and chitosan upon sewage sludge were evaluated. And coagulating effects of the mixtures of those materials and polymer (polyacrylamide) were also investigated. Coagulating efficiency of loess was higher than that of kaolinite and zeolite at the treatment levels of 2,500~50,000mg/L. Coagulating efficiencies of zeolite, kaolinite and loess at the treatment level of 20,000mg/L were lower than that of 1,000 mg/L of polymer, which meant that single application of those materials in real plant were not feasible. At the treatment level of 1,000 mg/L, coagulating efficiency of Chitosan was much lower than that of polymer, which also meant that single use of chitosan in real plant could be unrealistic because of its high price. However, the application of the mixture of 'polymer 80mg/L + kaolinite or loess 500 mg/L + chitosn 10mg/L' or the mixture of 'polymer 80mg/L + kaolinite or loess 500mg/L' was promising way for coagulating sewage sludge.

Analysis of Diesel Nano-particle Number Distribution Characteristics for Three Different Particle Measurement Systems (3개 입자측정스시템별 디젤 극미세입자의 수량분포 특성 비교)

  • Lee, Jin-Wook;Kim, Hong-Suk;Cho, Gyu-Baek;Jeong, Young-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.144-150
    • /
    • 2007
  • In recent years, the particle number emissions rather than particulate mass emissions in automotive engine have become the subject of controversial discussions. Recent results from the health effects studies imply that it is possible that particulate mass does not properly correlated with the variety of health effects attributed to diesel exhaust. So, the concern is instead now focusing on nano-sized particles emitted from I. C. engine. This study has been performed for the better understanding about the engine nano-particle for 3-measurement systems with different measuring principle. Firstly, EEPS is a newly introduced instrument for size distribution measurement of engine exhaust particles. It can measure nano-particles with an adequate resolution and in real time. In this study, the characteristics of EEPS were compared with ELPI and SMPS. As a research results, EEPS showed a same effect of engine load on the size distribution with ELPI and SMPS. But the quantitative results of EEPS were more similar to SMPS than ELPI, because the EEPS and SMPS use a same principle for classifying particles by size. The capability for transient measurement of EEPS was equivalent to that of ELPI.

Fishing performance of a coastal drift net in accordance with materials of the environmentally-friendly biodegradable net twine (친환경 생분해성 그물실의 재질에 따른 연안 유자망의 어획성능 특성)

  • KIM, Seonghun;KIM, Pyungkwan;JEONG, Seongjae;BAE, Jaehyun;LIM, Jihyun;OH, Wooseok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.2
    • /
    • pp.97-106
    • /
    • 2018
  • The objective of this study was to estimate physical properties and fishing performances of net twine with improved PBS copolymer resin (Bio-new), the existing PBS/PBAT blending resin (Bio-old) and commercial Nylon (Nylon). The tensile strength of Bio-new monofilament was equal to Bio-old and the elongation of Bio-new was about 6 % higher than that of Bio-old in wet condition. The physical properties tests were carried out to estimate breaking load and stiffness in dry and wet conditions, respectively. In the results, the breaking load of Nylon netting was the highest whereas the elongation of Bio-new was 1.4 times higher than that of Nylon netting in wet condition. The breaking load of Bio-old netting was about 9.2 % higher than that of Bio-new netting. However, the elongation of the Bio-new netting was about 3% higher than that of Bio-old. The stiffness of the Bio-new compared to Bio-old was improved about 34 % in dry condition and about 32 % in wet condition. The filed experiments of the fishing performance were conducted with three kinds of drift nets with different netting materials in the coastal sea of Jeju. The each experimental drift net made of different materials showed the similar fishing performance. Bio-old drift net yielded less catches of small sized yellow croaker than other drift nets. The netting materials affected the fishing performance and length distribution of catches in the drift nets.

Development of Environment-friendly Cushioning Materials by Pulping of Waste Residual Woods (폐잔재의 펄프화를 통한 환경친화적 완충소재의 개발)

  • Lee, Young-Min;Kim, Chul-Hwan;Kim, Jae-Ok;Kim, Gyeong-Yun;Shin, Tae-Gi;Song, Dae-Bin;Park, Chong-Yawl
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.2 s.115
    • /
    • pp.61-71
    • /
    • 2006
  • Environment-friendly shock-absorbing (cushioning) materials were made using a vacuum forming method from waste wood collected from local mountains in Korea. The waste wood was pulped by thermomechanical pulping. The TMP cushions showed superior shock-absorbing properties with lower elastic moduli compared to EPS(Expanded Polystyrene) and pulp mold. Even though the TMP cushions made using at different suction times had many free voids in their inner fiber structures, their apparent densities were a little higher than EPS and much lower than pulp mold. The addition of cationic starch improved elastic modulus of the TMP cushions without increasing the apparent density, which was different from surface sizing with starch. The porosity of the TMP cushions was a little greater than EPS and much less than pulp mold. Finally, the TMP cushions have great potential to endure external impacts occurring during goods distribution.

Mechanical Properties and Thermal Stability of Ti0.5Al0.5N/CrN Nano-multilayered Coatings (Ti0.5Al0.5N/CrN 나노 다층 박막의 기계적 성질과 열적 안정성)

  • Ahn, Seung-Su;Park, Jong-Keuk;Oh, Kyung-Sik;Chung, Tai-Joo
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.406-413
    • /
    • 2020
  • Ti0.5Al0.5N/CrN nano-multilayers, which are known to exhibit excellent wear resistances, were prepared using the unbalanced magnetron sputter for various periods of 2-7 nm. Ti0.5Al0.5N and CrN comprised a cubic structure in a single layer with different lattice parameters; however, Ti0.5Al0.5N/CrN exhibited a cubic structure with the same lattice parameters that formed the superlattice in the nano-multilayers. The Ti0.5Al0.5/CrN multilayer with a period of 5.0 nm exceeded the hardness of the Ti0.5Al0.5N/CrN single layer, attaining a value of 36 GPa. According to the low-angle X-ray diffraction, the Ti0.5Al0.5N/CrN multilayer maintained its as-coated structure up to 700℃ and exhibited a hardness of 32 GPa. The thickness of the oxidation layer of the Ti0.5Al0.5N/CrN multilayered coating was less than 25% of that of the single layers. Thus, the Ti0.5Al0.5N/CrN multilayered coating was superior in terms of hardness and oxidation resistance as compared to its constituent single layers.

Localization development of environmentally-friendly high-functional outsole material using leather scrap (피혁폐기물을 활용한 친환경 고기능성 아웃솔 소재의 국산화 개발방안)

  • Sang, Jeong Seon;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.2
    • /
    • pp.165-176
    • /
    • 2021
  • To solve environmental problems, research and efforts are required to reduce leather waste that is generated in large quantities during the leather manufacturing process. Leatherboard is a plate-like material that is made by crushing leather waste, such as trimming or shaving scraps and mixing fibers, pulp, rubber, and adhesives. The aim of this study is to provide basic data on the localization of leatherboard manufacturing technology for outsoles, which are increasingly in demand due to their excellent performance and price competitiveness. Interviews with experts and related organizations were conducted to investigate the related global technology trends. Also, the performance of three products that can be used as reference materials were evaluated and compared. As part of the research and efforts to reduce the amount of leather waste generated, high-performance materials using leather waste were developed and commercialized by major western companies. In Korea, various efforts have been made since 2000, and some companies have produced leatherboard for interior uses. However, the amount of waste recycled relative to that generated is not large due to the limited demand. Natural leather soles perform better than leatherboard soles in all evaluation aspects. In the case of leatherboard, performance varied by manufacturer. German products showed flexibility resistance and dimensional stability, thereby meeting performance requirements. However, abrasion resistance and cleavage resistance were slightly below the required performance standards, and research and development is needed to improve performance in those areas. Currently, it is impossible to evaluate the performance of domestic products due to underdevelopment. However, if the development of process technology continues based on the performance evaluation results of the best leatherboard in the shoe industry, materials for outsoles will be able to be produced domestically with prices competitiveness while realizing natural leather materials performance to some extent.