DOI QR코드

DOI QR Code

Mechanical Properties and Thermal Stability of Ti0.5Al0.5N/CrN Nano-multilayered Coatings

Ti0.5Al0.5N/CrN 나노 다층 박막의 기계적 성질과 열적 안정성

  • Ahn, Seung-Su (KORLOY) ;
  • Park, Jong-Keuk (Korea Institute of Science and Technology) ;
  • Oh, Kyung-Sik (School of Advanced Materials Engineering, Industrial Technology Center for Environment-friendly Materials, Andong National University) ;
  • Chung, Tai-Joo (School of Advanced Materials Engineering, Industrial Technology Center for Environment-friendly Materials, Andong National University)
  • 안승수 (한국야금) ;
  • 박종극 (한국과학기술연구원) ;
  • 오경식 (국립안동대학교 신소재공학부 친환경신소재산업지원센터) ;
  • 정태주 (국립안동대학교 신소재공학부 친환경신소재산업지원센터)
  • Received : 2020.10.05
  • Accepted : 2020.10.20
  • Published : 2020.10.28

Abstract

Ti0.5Al0.5N/CrN nano-multilayers, which are known to exhibit excellent wear resistances, were prepared using the unbalanced magnetron sputter for various periods of 2-7 nm. Ti0.5Al0.5N and CrN comprised a cubic structure in a single layer with different lattice parameters; however, Ti0.5Al0.5N/CrN exhibited a cubic structure with the same lattice parameters that formed the superlattice in the nano-multilayers. The Ti0.5Al0.5/CrN multilayer with a period of 5.0 nm exceeded the hardness of the Ti0.5Al0.5N/CrN single layer, attaining a value of 36 GPa. According to the low-angle X-ray diffraction, the Ti0.5Al0.5N/CrN multilayer maintained its as-coated structure up to 700℃ and exhibited a hardness of 32 GPa. The thickness of the oxidation layer of the Ti0.5Al0.5N/CrN multilayered coating was less than 25% of that of the single layers. Thus, the Ti0.5Al0.5N/CrN multilayered coating was superior in terms of hardness and oxidation resistance as compared to its constituent single layers.

Keywords

References

  1. J. S. Koehler: Phys. Rev. B, 2 (1970) 547. https://doi.org/10.1103/PhysRevB.2.547
  2. W. Herr, B. Matthes, E. Broszeit, M. Meyer and R. Suchentrunk: Surf. Coat. Tech., 60 (1993) 428. https://doi.org/10.1016/0257-8972(93)90126-9
  3. J. W. Cahn: Acta Metall., 11 (1963) 1275. https://doi.org/10.1016/0001-6160(63)90022-1
  4. M. Kato, T. Mori and L. H. Schwartz: Acta Metall., 28 (1980) 285. https://doi.org/10.1016/0001-6160(80)90163-7
  5. A. K. Head: Philos. Mag., 44 (1953) 92. https://doi.org/10.1080/14786440108520278
  6. J.-K. Park and Y.-J. Baik: Surf. Coat. Tech., 200 (2005) 1519. https://doi.org/10.1016/j.surfcoat.2005.08.099
  7. H. G. Prengel, A. T. Santhanam, R. M. Penich, P. C. Jindal and K. H. Wendt: Surf. Coat. Tech., 94-95 (1997) 597. https://doi.org/10.1016/S0257-8972(97)00503-3
  8. A. Raveh, M. Weiss, M. Pinkas, D. Z. Rosen and G. Kimmel: Surf. Coat. Tech., 114 (1999) 269. https://doi.org/10.1016/S0257-8972(99)00054-7
  9. W. D. Munz: J. Vac. Sci. Technol. A, 4 (1986) 2717. https://doi.org/10.1116/1.573713
  10. O. Knotek and T. Leyendecker: J. Solid State Chem., 70 (1987) 318. https://doi.org/10.1016/0022-4596(87)90071-5
  11. K. Holmberg, H. Ronkainen and A. Mattews: Ceramics International, 26 (2000) 787. https://doi.org/10.1016/S0272-8842(00)00015-8
  12. P. J. Kelly and R. D. Arnell: Surf. Coat. Tech., 97 (1997) 595. https://doi.org/10.1016/S0257-8972(97)00328-9
  13. S. S. Ahn, K. S. Oh, T. J. Chung and J. K. Park: J. Kor. Cerm. Soc., 56 (2019) 49. https://doi.org/10.4191/kcers.2019.56.1.08
  14. E. Fullerton, I. K. Schuller, H. Vanderstraeten and Y. Bruynseraede: Phys. Rev. B, 45 (1992) 9292. https://doi.org/10.1103/PhysRevB.45.9292
  15. A. Bendavid, P. J. Martin, X. Wang, M. Wittling and T. J. Kinder: J. Vac. Sci. Technol. A, 13 (1995) 1658. https://doi.org/10.1116/1.579747
  16. X. Feng, Y. Huang and A. J. Rosakis: Transactions of ASME, 74 (2007) 1276. https://doi.org/10.1115/1.2745392
  17. J. Pelleg, L. Z. Zevin, S. Lungo and N. Croitoru: Thin Solid Films, 197 (1997) 117. https://doi.org/10.1016/0040-6090(91)90225-M
  18. H. Y. Chen and F. H. Lu: J. Vac. Sci. Technol. A, 21 (2003) 695. https://doi.org/10.1116/1.1566787