Browse > Article
http://dx.doi.org/10.7473/EC.2022.57.2.62

Recent Progress in Passive Radiative Cooling for Sustainable Energy Source  

Park, Choyeon (Department of Polymer Science and Engineering, Chungnam National University)
Park, Chanil (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Choi, Jae-Hak (Department of Polymer Science and Engineering, Chungnam National University)
Yoo, Youngjae (Department of Advanced Materials Engineering, Chung-Ang University)
Publication Information
Elastomers and Composites / v.57, no.2, 2022 , pp. 62-72 More about this Journal
Abstract
Passive daytime radiative cooling (PDRC) is attracting increasing attention as an eco-friendly technology that can save cooling energy by not requiring an external power supply. An ideal PDRC structure should improve solar reflectance and emissivity within the atmospheric spectral window. Early designs of photonic crystal materials demonstrated the benefits of PDRC. Since then, functional arrangements of polymer-based radiative cooling materials have played an important role and are rapidly expanding. This review summarizes the known inorganic, organic, and hybrid materials for PDRC. The review also provides a complete understanding of PDRC and highlights its practical applications.
Keywords
passive radiative cooling; atmospheric window; composites; porous polymer; thermal emitter;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Son, S. Jeon, D. Chae, S. Y. Lee, Y. Liu, H. Lim, S. J. Oh, and H. Lee, "Colored Emitters with Silica-Embedded Perovskite Nanocrystals for Efficient Daytime Radiative Cooling", Nano Energy, 79, 105461 (2021).   DOI
2 S. Y. Jeong, C. Y. Tso, Y. M. Wong, C. Y. H. Chao, and B. Huang, "Daytime Passive Radiative Cooling by Ultra Emissive Bio-Inspired Polymeric Surface", Sol. Energy Mater. Sol. Cells, 206, 110296 (2020).   DOI
3 R. A. Yalcin, E. Blandre, K. Joulain, and J. Drevillon, "Daytime Radiative Cooling with Silica Fiber Network", Sol. Energy Mater. Sol. Cells, 206, 110320 (2020).   DOI
4 W. Z. Song, X. X. Wang, H. J. Qiu, N. Wang, M. Yu, Z. Fan, S. Ramakrishna, H. Hu, and Y. Z. Long, "Single Electrode Piezoelectric Nanogenerator for Intelligent Passive Daytime Radiative Cooling", Nano Energy, 82, 105695 (2021).   DOI
5 H. Kim, S. McSherry, B. Brown, and A. Lenert, "Selectively Enhancing Solar Scattering for Direct Radiative Cooling through Control of Polymer Nanofiber Morphology", ACS Appl. Mater. Interfaces, 12, 43553 (2020).   DOI
6 Z. Cheng, H. Han, F. Wang, Y. Yan, X. Shi, H. Liang, X. Zhang, and Y. Shuai, "Efficient Radiative Cooling Coating with Biomimetic Human Skin Wrinkle Structure", Nano Energy, 89, 106377 (2021).   DOI
7 A. Sachenko, V. Kostylyov, I. Sokolovskyi, and M. Evstigneev, "Effect of Temperature on Limit Photoconversion Efficiency in Silicon Solar Cells", IEEE J. Photovoltaics, 10, 63 (2020).   DOI
8 L. Zhu, A. P. Raman, and S. Fan, "Radiative Cooling of Solar Absorbers Using a Visibly Transparent Photonic Crystal Thermal Blackbody", Proc. Natl. Acad. Sci. U. S. A., 112, 12282 (2015).   DOI
9 E. Rephaeli, A. Raman, and S. Fan, "Ultrabroadband Photonic Structures to Achieve High-Performance Daytime Radiative Cooling". Nano Lett., 13, 1457 (2013).   DOI
10 L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, "Radiative Cooling of Solar Cells", Optica, 1, 32 (2014).   DOI
11 A. R. Gentle and G. B. Smith, "A Subambient Open Roof Surface under the Mid-Summer Sun", Adv. Sci. 2015, 2, 2-5. https://doi.org/10.1002/advs.201500119.   DOI
12 Z. Zhou, Z. Wang, and P. Bermel, "Radiative Cooling for Low-Bandgap Photovoltaics under Concentrated Sunlight", Opt. Express, 27, A404 (2019).   DOI
13 S. Y. Heo, D. H. Kim, Y. M. Song, and G. J. Lee, "Determining the Effectiveness of Radiative Cooler-Integrated Solar Cells", Adv. Energy Mater., 12, 103258 (2022).
14 M. Muselli, "Passive Cooling for Air-Conditioning Energy Savings with New Radiative Low-Cost Coatings", Energy Build., 42, 945 (2010).   DOI
15 A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, "Optimized Cool Roofs: Integrating Albedo and Thermal Emittance with R-Value", Sol. Energy Mater. Sol. Cells, 95, 3207 (2011).   DOI
16 X. Nie, Y. Yoo, H. Hewakuruppu, J. Sullivan, A. Krishna, and J. Lee, "Cool White Polymer Coatings Based on Glass Bubbles for Buildings", Sci. Rep., 10, 1 (2020).   DOI
17 X. A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng, Y. Wang, S. Deng, X. Wu, Z. Wu, M. Ouyang, and Y. H. Wang, "Dynamic Gating of Infrared Radiation in a Textile", Science, 363, 619 (2019).   DOI
18 P. C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, "Personal Thermal Management by Metallic Nanowire-Coated Textile", Nano Lett., 15, 365 (2015).   DOI
19 P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, "Radiative Human Body Cooling by Nanoporous Polyethylene Textile", Science, 353, 1019 (2016).   DOI
20 L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou, P. Wu, D. Lin, S. Fan, and Y. Cui, "Temperature Regulation in Colored Infrared-Transparent Polyethylene Textiles", Joule, 3, 1478 (2019).   DOI
21 S. Khan, J. Kim, K. Roh, G. Park, and W. Kim, "High Power Density of Radiative-Cooled Compact Thermoelectric Generator Based on Body Heat Harvesting", Nano Energy, 87, 106180 (2021).   DOI
22 K. Te Lin, J. Han, K. Li, C. Guo, H. Lin, and B. Jia, "Radiative Cooling: Fundamental Physics, Atmospheric Influences, Materials and Structural Engineering, Applications and Beyond", Nano Energy, 80, 105517 (2021).   DOI
23 E. A. Goldstein, A. P. Raman, and S. Fan, "Sub-Ambient Non-Evaporative Fluid Cooling with the Sky", Nat. Energy, 2, 17143 (2017).   DOI
24 S. Fan and W. Li, "Photonics and Thermodynamics Concepts in Radiative Cooling", Nat. Photonics, 16, 182 (2022).   DOI
25 Y. Zhang, X. Chen, B. Cai, H. Luan, Q. Zhang, and M. Gu, "Photonics Empowered Passive Radiative Cooling", Adv. Photonics Res., 2, 202000106 (2021).
26 W. Li and S. Fan, "Radiative Cooling: Harvesting the Coldness of the Universe", Opt. Photonics News, 30, 32 (2019).
27 B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, "Radiative Cooling: A Review of Fundamentals, Materials, Applications, and Prospects", Appl. Energy, 236, 489 (2019).   DOI
28 S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, "The Radiative Cooling of Selective Surfaces", Sol. Energy, 17, 83 (1975).   DOI
29 B. Orel, M. K. Gunde, and A. Krainer, "Radiative Cooling Efficiency of White Pigmented Paints", Sol. Energy, 50, 477 (1993).   DOI
30 L. Zhu, A. Raman, and S. Fan, "Color-Preserving Daytime Radiative Cooling", Appl. Phys. Lett., 103, 22 (2013).
31 D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, and R. Yang, "Radiative Sky Cooling: Fundamental Principles, Materials, and Applications", Appl. Phys. Rev., 6, 021306 (2019).   DOI
32 T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen, and L. A. Wu, "Structural Polymer for Highly Efficient All-Day Passive Radiative Cooling", Nat. Commun., 12, 1 (2021).   DOI
33 X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang, H. Zhou, and T. Fan, "Scalable Flexible Hybrid Membranes with Photonic Structures for Daytime Radiative Cooling", Adv. Funct. Mater., 30, 1 (2020).
34 L. Cai, A. Y. Song, W. Li, P. C. Hsu, D. Lin, P. B. Catrysse, Y. Liu, Y. Peng, J. Chen, H. Wang, J. Xu, A. Yang, S. Fan, and Y. Cui, "Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling", Adv. Mater., 30, 1 (2018).
35 M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo, S. Yang, N. Zhao, L. Pattelli, J. Xu, and D. S. Wiersma, "Bioinspired "Skin" with Cooperative Thermo-Optical Effect for Daytime Radiative Cooling", ACS Appl. Mater. Interfaces, 12, 25286 (2020).   DOI
36 J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, "Hierarchically Porous Polymer Coatings for Highly Efficient Passive Daytime Radiative Cooling", 362, 315 (2018).   DOI
37 S. Y. Jeong, C. Y. Tso, J. Ha, Y. M. Wong, C. Y. H. Chao, B. Huang, and H. Qiu, "Field Investigation of a Photonic Multi-Layered TiO2 Passive Radiative Cooler in Sub-Tropical Climate", Renewable Energy, 146, 44 (2020).   DOI
38 X. Yu, J. Chan, and C. Chen, "Review of Radiative Cooling Materials: Performance Evaluation and Design Approaches", Nano Energy, 88, 106259 (2021).   DOI
39 M. M. Hossain and M. Gu, "Radiative Cooling: Principles, Progress, and Potentials", Adv. Sci., 3, 1 (2016).
40 C. G. Granqvist and A. Hjortsberg, "Radiative Cooling to Low Temperatures: General Considerations and Application to Selectively Emitting SiO Films", J. Appl. Phys., 52, 4205 (1981).   DOI
41 M. M. Hossain, B. Jia, and M. A. Gu, "Metamaterial Emitter for Highly Efficient Radiative Cooling", Adv. Opt. Mater., 3, 1047 (2015).   DOI
42 A. R. Gentle and G. B. Smith, "Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles", Nano Lett., 10, 373 (2010).   DOI
43 A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, "Passive Radiative Cooling below Ambient Air Temperature under Direct Sunlight", Nature, 515, 540 (2014).   DOI
44 M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, "Passive Radiative Cooling Design with Broadband Optical Thin-Film Filters", J. Quant. Spectrosc. Radiat. Transf., 198, 1339 (2017).
45 M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo, S. Yang, N. Zhao, M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo, S. Yang, and N. Zhao, "Generalized Bioinspired Approach to a Daytime Radiative Cooling "Skin", 12, 25286 (2020).   DOI
46 A. Aili, Z. Y. Wei, Y. Z. Chen, D. L. Zhao, R. G. Yang, and X. B. Yin, "Selection of Polymers with Functional Groups for Daytime Radiative Cooling", Mater. Today Phys., 10, 100127 (2019).   DOI
47 H. Zhang, K. C. S. Ly, X. Liu, Z. Chen, M. Yan, Z. Wu, X. Wang, Y. Zheng, H. Zhou, and T. Fan, "Biologically Inspired Flexible Photonic Films for Efficient Passive Radiative Cooling", Proc. Natl. Acad. Sci. U. S. A. 117, 14657 (2020).   DOI
48 B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu, H. Min, S. Tang, and X. Meng, "3D Porous Polymer Film with Designed Pore Architecture and Auto-Deposited SiO2 for Highly Efficient Passive Radiative Cooling", Nano Energy, 81, 105600 (2021).   DOI
49 T. S. Safi and J. N. Munday, "Improving Photovoltaic Performance through Radiative Cooling in Both Terrestrial and Extraterrestrial Environments", Opt. Express, 23, 1120 (2015).
50 Y. Zhou, Y. Liu, Y. Li, R. Jiang, W. Li, W. Zhao, R. Mao, L. Deng, and P. Zhou, "Flexible Radiative Cooling Material Based on Amorphous Alumina Nanotubes", Opt. Mater. Express, 10, 1641 (2020).   DOI
51 Y. Huang, M. Pu, Z. Zhao, X. Li, X. Ma, and X. Luo, "Broadband Metamaterial as an "Invisible" Radiative Cooling Coat", Opt. Commun., 407, 204 (2018).   DOI
52 Y. Fu, J. Yang, Y. S. Su, W. Du, and Y. G. Ma, "Daytime Passive Radiative Cooler Using Porous Alumina". Sol. Energy Mater. Sol. Cells, 191, 50x (2019).
53 Y. Xu, B. Sun, Y. Ling, Q. Fei, Z. Chen, X. Li, P. Guo, N. Jeon, S. Goswami, Y. Liao, S. Ding, Q. Yu, J. Lin, G. Huang, and Z. Yan, "Multiscale Porous Elastomer Substrates for Multifunctional On-Skin Electronics with Passive-Cooling Capabilities", Proc. Natl. Acad. Sci. U. S. A., 117, 205 (2020).   DOI
54 A. Leroy, B. Bhatia, C. C. Kelsall, A. Castillejo-Cuberos, M. H. Di Capua, L. Zhao, L. Zhang, A. M. Guzman, and E. N. Wang, "High-Performance Subambient Radiative Cooling Enabled by Optically Selective and Thermally Insulating Polyethylene Aerogel", Sci. Adv., 5, 1 (2019).
55 J. Wang, J. Sun, T. Guo, H. Zhang, M. Xie, J. Yang, X. Jiang, Z. Chu, D. Liu, and S. Bai, "High-Strength Flexible Membrane with Rational Pore Architecture as a Selective Radiator for High-Efficiency Daytime Radiative Cooling", Adv. Mater. Technol., 7, 1 (2022).
56 D. Li, X. Liu, W. Li, Z. Lin, B. Zhu, Z. Li, J. Li, B. Li, and S. Fan, "Scalable and Hierarchically Designed Polymer Film as a Selective Thermal Emitter for High-Performance All-Day Radiative Cooling", Nat. Nanotechnol, 16, 153 (2021).   DOI
57 S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, "Scalable Dual-Layer Film with Broadband Infrared Emission for Sub-Ambient Daytime Radiative Cooling", Sol. Energy Mater. Sol. Cells, 208, 110393 (2020).   DOI