DOI QR코드

DOI QR Code

Recent Progress in Passive Radiative Cooling for Sustainable Energy Source

  • Park, Choyeon (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Park, Chanil (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Choi, Jae-Hak (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Yoo, Youngjae (Department of Advanced Materials Engineering, Chung-Ang University)
  • Received : 2022.06.17
  • Accepted : 2022.06.27
  • Published : 2022.06.30

Abstract

Passive daytime radiative cooling (PDRC) is attracting increasing attention as an eco-friendly technology that can save cooling energy by not requiring an external power supply. An ideal PDRC structure should improve solar reflectance and emissivity within the atmospheric spectral window. Early designs of photonic crystal materials demonstrated the benefits of PDRC. Since then, functional arrangements of polymer-based radiative cooling materials have played an important role and are rapidly expanding. This review summarizes the known inorganic, organic, and hybrid materials for PDRC. The review also provides a complete understanding of PDRC and highlights its practical applications.

Keywords

Acknowledgement

본 연구는 산업통상자원부 산업연계형저탄소공정전환핵심기술개발사업(과제번호 : RS-2022-00155175), 한국화학연구원 전략과제(SS2221-20) 및 중앙대학교 연구장학금의 지원을 받아 진행되었으며 이에 감사드립니다.

References

  1. E. A. Goldstein, A. P. Raman, and S. Fan, "Sub-Ambient Non-Evaporative Fluid Cooling with the Sky", Nat. Energy, 2, 17143 (2017). https://doi.org/10.1038/nenergy.2017.143
  2. X. Yu, J. Chan, and C. Chen, "Review of Radiative Cooling Materials: Performance Evaluation and Design Approaches", Nano Energy, 88, 106259 (2021). https://doi.org/10.1016/j.nanoen.2021.106259
  3. S. Fan and W. Li, "Photonics and Thermodynamics Concepts in Radiative Cooling", Nat. Photonics, 16, 182 (2022). https://doi.org/10.1038/s41566-021-00921-9
  4. Y. Zhang, X. Chen, B. Cai, H. Luan, Q. Zhang, and M. Gu, "Photonics Empowered Passive Radiative Cooling", Adv. Photonics Res., 2, 202000106 (2021).
  5. M. M. Hossain and M. Gu, "Radiative Cooling: Principles, Progress, and Potentials", Adv. Sci., 3, 1 (2016).
  6. K. Te Lin, J. Han, K. Li, C. Guo, H. Lin, and B. Jia, "Radiative Cooling: Fundamental Physics, Atmospheric Influences, Materials and Structural Engineering, Applications and Beyond", Nano Energy, 80, 105517 (2021). https://doi.org/10.1016/j.nanoen.2020.105517
  7. B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, "Radiative Cooling: A Review of Fundamentals, Materials, Applications, and Prospects", Appl. Energy, 236, 489 (2019). https://doi.org/10.1016/j.apenergy.2018.12.018
  8. C. G. Granqvist and A. Hjortsberg, "Radiative Cooling to Low Temperatures: General Considerations and Application to Selectively Emitting SiO Films", J. Appl. Phys., 52, 4205 (1981). https://doi.org/10.1063/1.329270
  9. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, "The Radiative Cooling of Selective Surfaces", Sol. Energy, 17, 83 (1975). https://doi.org/10.1016/0038-092X(75)90062-6
  10. B. Orel, M. K. Gunde, and A. Krainer, "Radiative Cooling Efficiency of White Pigmented Paints", Sol. Energy, 50, 477 (1993). https://doi.org/10.1016/0038-092X(93)90108-Z
  11. A. R. Gentle and G. B. Smith, "Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles", Nano Lett., 10, 373 (2010). https://doi.org/10.1021/nl903271d
  12. D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, and R. Yang, "Radiative Sky Cooling: Fundamental Principles, Materials, and Applications", Appl. Phys. Rev., 6, 021306 (2019). https://doi.org/10.1063/1.5087281
  13. W. Li and S. Fan, "Radiative Cooling: Harvesting the Coldness of the Universe", Opt. Photonics News, 30, 32 (2019).
  14. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, "Passive Radiative Cooling below Ambient Air Temperature under Direct Sunlight", Nature, 515, 540 (2014). https://doi.org/10.1038/nature13883
  15. E. Rephaeli, A. Raman, and S. Fan, "Ultrabroadband Photonic Structures to Achieve High-Performance Daytime Radiative Cooling". Nano Lett., 13, 1457 (2013). https://doi.org/10.1021/nl4004283
  16. L. Zhu, A. Raman, and S. Fan, "Color-Preserving Daytime Radiative Cooling", Appl. Phys. Lett., 103, 22 (2013).
  17. M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, "Passive Radiative Cooling Design with Broadband Optical Thin-Film Filters", J. Quant. Spectrosc. Radiat. Transf., 198, 1339 (2017).
  18. S. Y. Jeong, C. Y. Tso, J. Ha, Y. M. Wong, C. Y. H. Chao, B. Huang, and H. Qiu, "Field Investigation of a Photonic Multi-Layered TiO2 Passive Radiative Cooler in Sub-Tropical Climate", Renewable Energy, 146, 44 (2020). https://doi.org/10.1016/j.renene.2019.06.119
  19. Y. Zhou, Y. Liu, Y. Li, R. Jiang, W. Li, W. Zhao, R. Mao, L. Deng, and P. Zhou, "Flexible Radiative Cooling Material Based on Amorphous Alumina Nanotubes", Opt. Mater. Express, 10, 1641 (2020). https://doi.org/10.1364/ome.392241
  20. M. M. Hossain, B. Jia, and M. A. Gu, "Metamaterial Emitter for Highly Efficient Radiative Cooling", Adv. Opt. Mater., 3, 1047 (2015). https://doi.org/10.1002/adom.201500119
  21. Y. Huang, M. Pu, Z. Zhao, X. Li, X. Ma, and X. Luo, "Broadband Metamaterial as an "Invisible" Radiative Cooling Coat", Opt. Commun., 407, 204 (2018). https://doi.org/10.1016/j.optcom.2017.09.036
  22. Y. Fu, J. Yang, Y. S. Su, W. Du, and Y. G. Ma, "Daytime Passive Radiative Cooler Using Porous Alumina". Sol. Energy Mater. Sol. Cells, 191, 50x (2019).
  23. J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, "Hierarchically Porous Polymer Coatings for Highly Efficient Passive Daytime Radiative Cooling", 362, 315 (2018). https://doi.org/10.1126/science.aat9513
  24. Y. Xu, B. Sun, Y. Ling, Q. Fei, Z. Chen, X. Li, P. Guo, N. Jeon, S. Goswami, Y. Liao, S. Ding, Q. Yu, J. Lin, G. Huang, and Z. Yan, "Multiscale Porous Elastomer Substrates for Multifunctional On-Skin Electronics with Passive-Cooling Capabilities", Proc. Natl. Acad. Sci. U. S. A., 117, 205 (2020). https://doi.org/10.1073/pnas.1917762116
  25. A. Leroy, B. Bhatia, C. C. Kelsall, A. Castillejo-Cuberos, M. H. Di Capua, L. Zhao, L. Zhang, A. M. Guzman, and E. N. Wang, "High-Performance Subambient Radiative Cooling Enabled by Optically Selective and Thermally Insulating Polyethylene Aerogel", Sci. Adv., 5, 1 (2019).
  26. M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo, S. Yang, N. Zhao, M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo, S. Yang, and N. Zhao, "Generalized Bioinspired Approach to a Daytime Radiative Cooling "Skin", 12, 25286 (2020). https://doi.org/10.1021/acsami.0c03897
  27. M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo, S. Yang, N. Zhao, L. Pattelli, J. Xu, and D. S. Wiersma, "Bioinspired "Skin" with Cooperative Thermo-Optical Effect for Daytime Radiative Cooling", ACS Appl. Mater. Interfaces, 12, 25286 (2020). https://doi.org/10.1021/acsami.0c03897
  28. J. Wang, J. Sun, T. Guo, H. Zhang, M. Xie, J. Yang, X. Jiang, Z. Chu, D. Liu, and S. Bai, "High-Strength Flexible Membrane with Rational Pore Architecture as a Selective Radiator for High-Efficiency Daytime Radiative Cooling", Adv. Mater. Technol., 7, 1 (2022).
  29. T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen, and L. A. Wu, "Structural Polymer for Highly Efficient All-Day Passive Radiative Cooling", Nat. Commun., 12, 1 (2021). https://doi.org/10.1038/s41467-020-20314-w
  30. D. Li, X. Liu, W. Li, Z. Lin, B. Zhu, Z. Li, J. Li, B. Li, and S. Fan, "Scalable and Hierarchically Designed Polymer Film as a Selective Thermal Emitter for High-Performance All-Day Radiative Cooling", Nat. Nanotechnol, 16, 153 (2021). https://doi.org/10.1038/s41565-020-00800-4
  31. S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, "Scalable Dual-Layer Film with Broadband Infrared Emission for Sub-Ambient Daytime Radiative Cooling", Sol. Energy Mater. Sol. Cells, 208, 110393 (2020). https://doi.org/10.1016/j.solmat.2020.110393
  32. A. Aili, Z. Y. Wei, Y. Z. Chen, D. L. Zhao, R. G. Yang, and X. B. Yin, "Selection of Polymers with Functional Groups for Daytime Radiative Cooling", Mater. Today Phys., 10, 100127 (2019). https://doi.org/10.1016/j.mtphys.2019.100127
  33. S. Son, S. Jeon, D. Chae, S. Y. Lee, Y. Liu, H. Lim, S. J. Oh, and H. Lee, "Colored Emitters with Silica-Embedded Perovskite Nanocrystals for Efficient Daytime Radiative Cooling", Nano Energy, 79, 105461 (2021). https://doi.org/10.1016/j.nanoen.2020.105461
  34. S. Y. Jeong, C. Y. Tso, Y. M. Wong, C. Y. H. Chao, and B. Huang, "Daytime Passive Radiative Cooling by Ultra Emissive Bio-Inspired Polymeric Surface", Sol. Energy Mater. Sol. Cells, 206, 110296 (2020). https://doi.org/10.1016/j.solmat.2019.110296
  35. H. Zhang, K. C. S. Ly, X. Liu, Z. Chen, M. Yan, Z. Wu, X. Wang, Y. Zheng, H. Zhou, and T. Fan, "Biologically Inspired Flexible Photonic Films for Efficient Passive Radiative Cooling", Proc. Natl. Acad. Sci. U. S. A. 117, 14657 (2020). https://doi.org/10.1073/pnas.2001802117
  36. R. A. Yalcin, E. Blandre, K. Joulain, and J. Drevillon, "Daytime Radiative Cooling with Silica Fiber Network", Sol. Energy Mater. Sol. Cells, 206, 110320 (2020). https://doi.org/10.1016/j.solmat.2019.110320
  37. W. Z. Song, X. X. Wang, H. J. Qiu, N. Wang, M. Yu, Z. Fan, S. Ramakrishna, H. Hu, and Y. Z. Long, "Single Electrode Piezoelectric Nanogenerator for Intelligent Passive Daytime Radiative Cooling", Nano Energy, 82, 105695 (2021). https://doi.org/10.1016/j.nanoen.2020.105695
  38. X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang, H. Zhou, and T. Fan, "Scalable Flexible Hybrid Membranes with Photonic Structures for Daytime Radiative Cooling", Adv. Funct. Mater., 30, 1 (2020).
  39. H. Kim, S. McSherry, B. Brown, and A. Lenert, "Selectively Enhancing Solar Scattering for Direct Radiative Cooling through Control of Polymer Nanofiber Morphology", ACS Appl. Mater. Interfaces, 12, 43553 (2020). https://doi.org/10.1021/acsami.0c09374
  40. L. Cai, A. Y. Song, W. Li, P. C. Hsu, D. Lin, P. B. Catrysse, Y. Liu, Y. Peng, J. Chen, H. Wang, J. Xu, A. Yang, S. Fan, and Y. Cui, "Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling", Adv. Mater., 30, 1 (2018).
  41. B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu, H. Min, S. Tang, and X. Meng, "3D Porous Polymer Film with Designed Pore Architecture and Auto-Deposited SiO2 for Highly Efficient Passive Radiative Cooling", Nano Energy, 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600
  42. Z. Cheng, H. Han, F. Wang, Y. Yan, X. Shi, H. Liang, X. Zhang, and Y. Shuai, "Efficient Radiative Cooling Coating with Biomimetic Human Skin Wrinkle Structure", Nano Energy, 89, 106377 (2021). https://doi.org/10.1016/j.nanoen.2021.106377
  43. A. Sachenko, V. Kostylyov, I. Sokolovskyi, and M. Evstigneev, "Effect of Temperature on Limit Photoconversion Efficiency in Silicon Solar Cells", IEEE J. Photovoltaics, 10, 63 (2020). https://doi.org/10.1109/jphotov.2019.2949418
  44. T. S. Safi and J. N. Munday, "Improving Photovoltaic Performance through Radiative Cooling in Both Terrestrial and Extraterrestrial Environments", Opt. Express, 23, 1120 (2015).
  45. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, "Radiative Cooling of Solar Cells", Optica, 1, 32 (2014). https://doi.org/10.1364/optica.1.000032
  46. L. Zhu, A. P. Raman, and S. Fan, "Radiative Cooling of Solar Absorbers Using a Visibly Transparent Photonic Crystal Thermal Blackbody", Proc. Natl. Acad. Sci. U. S. A., 112, 12282 (2015). https://doi.org/10.1073/pnas.1509453112
  47. Z. Zhou, Z. Wang, and P. Bermel, "Radiative Cooling for Low-Bandgap Photovoltaics under Concentrated Sunlight", Opt. Express, 27, A404 (2019). https://doi.org/10.1364/oe.27.00a404
  48. S. Y. Heo, D. H. Kim, Y. M. Song, and G. J. Lee, "Determining the Effectiveness of Radiative Cooler-Integrated Solar Cells", Adv. Energy Mater., 12, 103258 (2022).
  49. M. Muselli, "Passive Cooling for Air-Conditioning Energy Savings with New Radiative Low-Cost Coatings", Energy Build., 42, 945 (2010). https://doi.org/10.1016/j.enbuild.2010.01.006
  50. A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, "Optimized Cool Roofs: Integrating Albedo and Thermal Emittance with R-Value", Sol. Energy Mater. Sol. Cells, 95, 3207 (2011). https://doi.org/10.1016/j.solmat.2011.07.018
  51. X. Nie, Y. Yoo, H. Hewakuruppu, J. Sullivan, A. Krishna, and J. Lee, "Cool White Polymer Coatings Based on Glass Bubbles for Buildings", Sci. Rep., 10, 1 (2020). https://doi.org/10.1038/s41598-019-56847-4
  52. A. R. Gentle and G. B. Smith, "A Subambient Open Roof Surface under the Mid-Summer Sun", Adv. Sci. 2015, 2, 2-5. https://doi.org/10.1002/advs.201500119.
  53. X. A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng, Y. Wang, S. Deng, X. Wu, Z. Wu, M. Ouyang, and Y. H. Wang, "Dynamic Gating of Infrared Radiation in a Textile", Science, 363, 619 (2019). https://doi.org/10.1126/science.aau1217
  54. L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou, P. Wu, D. Lin, S. Fan, and Y. Cui, "Temperature Regulation in Colored Infrared-Transparent Polyethylene Textiles", Joule, 3, 1478 (2019). https://doi.org/10.1016/j.joule.2019.03.015
  55. P. C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, "Personal Thermal Management by Metallic Nanowire-Coated Textile", Nano Lett., 15, 365 (2015). https://doi.org/10.1021/nl5036572
  56. P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, "Radiative Human Body Cooling by Nanoporous Polyethylene Textile", Science, 353, 1019 (2016). https://doi.org/10.1126/science.aaf5471
  57. S. Khan, J. Kim, K. Roh, G. Park, and W. Kim, "High Power Density of Radiative-Cooled Compact Thermoelectric Generator Based on Body Heat Harvesting", Nano Energy, 87, 106180 (2021). https://doi.org/10.1016/j.nanoen.2021.106180