Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.5.406

Mechanical Properties and Thermal Stability of Ti0.5Al0.5N/CrN Nano-multilayered Coatings  

Ahn, Seung-Su (KORLOY)
Park, Jong-Keuk (Korea Institute of Science and Technology)
Oh, Kyung-Sik (School of Advanced Materials Engineering, Industrial Technology Center for Environment-friendly Materials, Andong National University)
Chung, Tai-Joo (School of Advanced Materials Engineering, Industrial Technology Center for Environment-friendly Materials, Andong National University)
Publication Information
Journal of Powder Materials / v.27, no.5, 2020 , pp. 406-413 More about this Journal
Abstract
Ti0.5Al0.5N/CrN nano-multilayers, which are known to exhibit excellent wear resistances, were prepared using the unbalanced magnetron sputter for various periods of 2-7 nm. Ti0.5Al0.5N and CrN comprised a cubic structure in a single layer with different lattice parameters; however, Ti0.5Al0.5N/CrN exhibited a cubic structure with the same lattice parameters that formed the superlattice in the nano-multilayers. The Ti0.5Al0.5/CrN multilayer with a period of 5.0 nm exceeded the hardness of the Ti0.5Al0.5N/CrN single layer, attaining a value of 36 GPa. According to the low-angle X-ray diffraction, the Ti0.5Al0.5N/CrN multilayer maintained its as-coated structure up to 700℃ and exhibited a hardness of 32 GPa. The thickness of the oxidation layer of the Ti0.5Al0.5N/CrN multilayered coating was less than 25% of that of the single layers. Thus, the Ti0.5Al0.5N/CrN multilayered coating was superior in terms of hardness and oxidation resistance as compared to its constituent single layers.
Keywords
$Ti_{0.5}Al_{0.5}N$; CrN; Multilayer; Hardness; Oxidation resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Koehler: Phys. Rev. B, 2 (1970) 547.   DOI
2 W. Herr, B. Matthes, E. Broszeit, M. Meyer and R. Suchentrunk: Surf. Coat. Tech., 60 (1993) 428.   DOI
3 J. W. Cahn: Acta Metall., 11 (1963) 1275.   DOI
4 M. Kato, T. Mori and L. H. Schwartz: Acta Metall., 28 (1980) 285.   DOI
5 A. K. Head: Philos. Mag., 44 (1953) 92.   DOI
6 J.-K. Park and Y.-J. Baik: Surf. Coat. Tech., 200 (2005) 1519.   DOI
7 H. G. Prengel, A. T. Santhanam, R. M. Penich, P. C. Jindal and K. H. Wendt: Surf. Coat. Tech., 94-95 (1997) 597.   DOI
8 A. Raveh, M. Weiss, M. Pinkas, D. Z. Rosen and G. Kimmel: Surf. Coat. Tech., 114 (1999) 269.   DOI
9 W. D. Munz: J. Vac. Sci. Technol. A, 4 (1986) 2717.   DOI
10 O. Knotek and T. Leyendecker: J. Solid State Chem., 70 (1987) 318.   DOI
11 K. Holmberg, H. Ronkainen and A. Mattews: Ceramics International, 26 (2000) 787.   DOI
12 P. J. Kelly and R. D. Arnell: Surf. Coat. Tech., 97 (1997) 595.   DOI
13 S. S. Ahn, K. S. Oh, T. J. Chung and J. K. Park: J. Kor. Cerm. Soc., 56 (2019) 49.   DOI
14 E. Fullerton, I. K. Schuller, H. Vanderstraeten and Y. Bruynseraede: Phys. Rev. B, 45 (1992) 9292.   DOI
15 A. Bendavid, P. J. Martin, X. Wang, M. Wittling and T. J. Kinder: J. Vac. Sci. Technol. A, 13 (1995) 1658.   DOI
16 X. Feng, Y. Huang and A. J. Rosakis: Transactions of ASME, 74 (2007) 1276.   DOI
17 J. Pelleg, L. Z. Zevin, S. Lungo and N. Croitoru: Thin Solid Films, 197 (1997) 117.   DOI
18 H. Y. Chen and F. H. Lu: J. Vac. Sci. Technol. A, 21 (2003) 695.   DOI