• Title/Summary/Keyword: frictional resistance

Search Result 263, Processing Time 0.024 seconds

An Experimental Study on Characteristics of Friction Pendulum Isolation Bearings and Its Application to a Structure (마찰진자형 Isolator의 특성 및 구조물 적용 실험연구)

  • 김영중;허영철;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.356-363
    • /
    • 2001
  • The friction pendulum type seismic isolation system (FPS) using the PTFE based materials has been developed to provide a simple and effective way to achieve earthquake resistance for buildings. PTFE matrials are soft and apt to be deformed easily after a few working cycles. Instead of the usual PTFE materials, the Polyimide material was used in this research. Polyimide is harder than PTFE, but has smaller friction coefficient and longer duration fur usage. In this paper, various kinds of PTFE materials were tested to define the frictional characteristics compared with the Polyimide material. FPS was manufactured with fine surface roughness and used with Polyimide material to show the seismic isolation efficiency, and life duration when applied to a rigid mass model and a 5 stole frame model.

  • PDF

A Study on the Behavior of Partially Extended Grouted Soil-Nailing (부분적으로 확장된 그라우트 구근을 갖는 쏘일네일링 공법의 거동에 관한 연구)

  • Lee, In;Choi, Seung-Hwan;Kim, Ju-Hyun;Park, Jun-Beom;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1068-1075
    • /
    • 2009
  • The Soil-nailing installed to the slope or the vertical excavation surface shows reinforce effect using frictional resistance between ground and grout. This friction is showed the more the shape of grout is rough, the more efficient.. This study is about the characteristic behavior of Soil-nailing has partial extension grout made artificially control. In this study, we refer to the new boring machine that can make partially extended grout and perform 3D analysis between of the partial extended grout and the general grout of a cylinder shape using the finite element method for comparing.

  • PDF

A Study of Longitudinal Forces and Displacements in a Multi-Span Bridge Equipped with a CWR Track (장대레일이 설치된 교량에서의 축방향 변위 및 축력 변화 연구)

  • Lee, Joo-Heon;Huh, Young
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.442-449
    • /
    • 1999
  • Due to temperature variations, considerable longitudinal rail forces and displacements may develop in continuous welded rail(CWR) track on long-span bridges or viaducts. Excessive relative displacements between sleepers and ballast bed may disturb the stable position of the track in the ballast which results in a lower frictional resistance. Generally, these problems are solved by installing rail expansion devices. However the application of expansion devices in high-speed tracks on existing bridges, as a means to prevent excessive longitudinal displacements and forces, is not attractive method due to comfort, safety and maintenance aspects. An alternative and very effective solution is possibly the use of so-called zero longitudinal restraint(ZLR) fastenings over some length of the track. The calculations, carried out in this respect, show a considerable reduction of track displacements, track forces, and the relative sleeper/ballast displacements. This reduction depends on the length over which these fastenings are installed. In this paper calculations of the longitudinal displacments and forces in a CWR track and substructure resulting from thermal, mechanical and kinematical loads were carried out using the FEM analysis program LUSAS

  • PDF

Non Darcy Mixed Convection Flow of Magnetic Fluid over a Permeable Stretching Sheet with Ohmic Dissipation

  • Zeeshan, A.;Majeed, A.
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.153-158
    • /
    • 2016
  • This paper aims to discuss the Non Darcy boundary layer flow of non-conducting viscous fluid with magnetic ferroparticles over a permeable linearly stretching surface with ohmic dissipation and mixed convective heat transfer. A magnetic dipole is applied "a" distance below the surface of stretching sheet. The governing equations are modeled. Similarity transformation is used to convert the system of partial differential equations to a system of non-linear but ordinary differential equations. The ODEs are solved numerically. The effects of sundry parameters on the flow properties like velocity, pressure, skin-friction coefficient and Nusselt number are presented. It is deduced the frictional resistance of Lorentz force decreases with stronger electric field and the trend reverses for temperature. Skin friction coefficient increase with increase in ferromagnetic interaction parameter. Whereas, Nusselt number decrease.

Study on the Frictional Behavior, Wear and Corrosion Resistance of Textured TiN Coated Layers (집합조직이 존재하는 TiN 코팅 층의 마찰, 마멸, 내부식 특성에 관한 연구)

  • 김희동;김인수;성동영;이민구
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.394-400
    • /
    • 2003
  • TiN coated films exhibit excellent mechanical properties such as high wear, erosion and corrosion resistances and a high thermal stability. Therefore, they are widely applied to a coating material in tools, ornaments, parts and semiconductors. However, the fracture of TiN coated films frequently occurs. The distribution of preferred orientations, i.e., texture, of TiN coated films strongly influences the fracture behavior of these films. In the present study. various TiN coating layers having different textures were prepared by the reactive ion physical vapor deposition and the texture dependence of friction coefficient, erosion and corrosion in these coating layers was investigated. The sample depicting the (115) texture parallel to the coating layer normal displayed a flatter surface than that observed from the sample having the (111) texture. The friction coefficient of TiN thin films was hardly dependent on the texture of coated samples. The samples having (115) texture displayed higher wear, erosion and corrosion resistances than the samples having (111) texture.

On Propeller Performance of DTC Post-Panamax Container Ship

  • Kinaci, Omer Kemal;Kukner, Abdi;Bal, Sakir
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.77-89
    • /
    • 2013
  • The propeller performance has been investigated using a benchmark Duisburg Test Case ship with RANSE. First, the hydrodynamic characteristics of propeller in case of open water have been analyzed by a commercial CFD program and the results are compared with those of experimental data. Later, the flow around the bare hull has been solved and the frictional resistance value and form factor of the ship have been obtained and compared with those of ITTC57 formulation and experimental results for validation. The free surface effect has been ignored. A good agreement has been obtained between the results of RANSE and experiments at both stages. Then the ship - propeller interaction problem was solved by RANSE and the differences in thrust, torque and efficiency of propeller as compared with the open-water numerical results have been discussed.

A test for friction and wear characteristic of brake disk materials (제동디스크 소재의 마찰-마모특성 시험)

  • Lim, Choong-Hwan;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1761-1765
    • /
    • 2008
  • In the braking of a railroad car, mechanical brake systems using wheel tread and brake disk are applied as well as electrical brake systems by regenerator and rheostat. It is very important to consider the frictional characteristic because kinetic energy of the vehicle is dissipated as converted thermal energy through friction between disk and brake pad during disk braking. A friction coefficient and wear characteristic are decided from the interrelationship of disk and friction material in the disk brake system. Lab-scale dynamometer test on developed brake disk materials for increasing heat resistance was performed in this study. Each candidate material was tested at various braking speeds and pressures and we obtained the friction coefficient and wear characteristic. And we executed comparative evaluation of the result from the test.

  • PDF

Biomechanical Analysis at the Start of Bobsleigh Run in Preparation for the 2018 Pyeongchang Winter Olympics

  • Park, Seungbum;Lee, Kyungdeuk;Kim, Daewoong;Yoo, Junghyeon;Jung, Jaemin;Park, Kyunghwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.4
    • /
    • pp.239-245
    • /
    • 2017
  • Objective: The bobsleigh shoes used in the start section are one of the most important equipment for improving the competition. Despite the importance of the start section, there are no shoes that are specific for bobsleigh athletes in Korea and Korean athletes have to wear sprint spike shoes and practice the start instead of wearing bobsleigh shoes. The objective of the present study was to provide data for improving the performance of Korean bobsleigh athletes by investigating the differences in their split time, plantar pressure, and forefoot bending angle based on skill levels at the start of a run under the same conditions as training conditions. Method: Six Korean bobsleigh athletes were divided into two groups, superior (n=3) and non-superior (n=3). A digital speedometer measured the split time at the start; the Pedar-X system (Novel, Germany) measured plantar pressure. Plantar pressures and split times were measured as the athletes pushed a bobsleigh and sprinted at full speed from the start line to the 10-m mark on the bobsleigh track. An ultra-high-speed camera was used to measure the forefoot bending angle during the start phase. Results: Significant between-group differences were found in split times (p<.000; superior = 2.38 s, non-superior = 2.52 s). The superior group had a larger rearfoot (p<.05) contact area, maximum rearfoot force (p<.01), and a larger change in angles 3 and 4 (p<.05). Conclusion: At the start of a bobsleigh run, proper use of the rearfoot for achieving effective driving force and increasing frictional resistance through a wider frictional force can shorten start time.

Friction-dependent Slip Behavior of Imgok Fault under the Present-day Stress Field (현생 응력하에서 단층 마찰계수에 따른 임곡단층의 거동 가능성 해석)

  • Na, Hyun-Woo;Chang, Chandong;Chang, Chun-Joong
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.217-225
    • /
    • 2013
  • We carried out geometrical, kinematic, and geomechanical analyses on a lineament (the Imgok fault) near Gangneung, observed in ASTER images and aerial photographs, and field surveys. Earthquake focal mechanism solutions, used to estimate the present-day stress state, revealed that the direction of maximum compression is approximately N$70^{\circ}$E and that the stress condition is in favor of either strike-slip or reverse movement on the fault. The strike of the fault is not ideal for slip under the present-day stress field and thus the fault has a low slip tendency. However, the fault may be able to slip if the frictional coefficient (${\mu}$), representing the resistance of the fault to slip, is sufficiently low (e.g., ${\mu}$ < 0.25).

S.D.O.F Macro-element for Interaction of Deep Foundation (단자유도 매크로요소를 이용한 깊은기초의 상호작용 모델)

  • Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.347-355
    • /
    • 2008
  • In this paper single degree of freedom macro-element model was presented to investigate the interaction between soil and the deep foundation under the lateral loads. It was made by modelling each component related to the soil-structure interaction and combining them into one piece. It enhanced the conventional method that was not able to break down the interaction components in piece due to the usage of simple spring element for interaction. A proposed macro-element classified the stress components in relation to the interaction into frictional and compressive resistance. Each component was modelled using the classical plasticity theory, and finally combined in parallel. An example study was carried out using the proposed macro-element for deep foundation embedded in three layered cohesive soil. It showed improved results compared to the conventional method by producing additional information of the interaction components as well as the overall behavior of foundation.