DOI QR코드

DOI QR Code

현생 응력하에서 단층 마찰계수에 따른 임곡단층의 거동 가능성 해석

Friction-dependent Slip Behavior of Imgok Fault under the Present-day Stress Field

  • 나현우 (충남대학교 지질환경과학과) ;
  • 장찬동 (충남대학교 지질환경과학과) ;
  • 장천중 (한국수력원자력(주) 중앙연구원)
  • Na, Hyun-Woo (Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Chang, Chandong (Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Chang, Chun-Joong (Central Research Institute, Korea Hydro & Nuclear Power)
  • 투고 : 2013.07.11
  • 심사 : 2013.09.04
  • 발행 : 2013.09.30

초록

강릉지역의 NNE-SSW 주향을 갖는 선형구조(임곡단층)를 대상으로, ASTER 영상과 항공사진을 이용한 구조 영상 분석과 야외지질조사를 통해 단층의 기하 및 운동학적 특성을 관찰하고 단층의 지질역학적 특성에 대한 분석을 시도하였다. 현생 응력장 하에서 임곡단층의 운동 가능성 여부를 파악하기 위해 이용된 주변 지진자료는 이 지역의 현생 최대응력방향이 약 N$70^{\circ}$E이며 주향이동과 역단층 운동에 유리한 응력상태임을 보여준다. 현생 응력장 하에서 임곡단층이 운동하기에는 최적의 방향에서 오차 범위 밖의 주향을 보여 전단 성향이 낮은 것으로 분석되었다. 그러나 단층의 역학적 특성을 나타내는 마찰계수(${\mu}$)가 상당히 낮을 경우(예를 들어 0.25 이하) 현생 응력장 하에서도 운동 가능성이 있는 것으로 파악된다.

We carried out geometrical, kinematic, and geomechanical analyses on a lineament (the Imgok fault) near Gangneung, observed in ASTER images and aerial photographs, and field surveys. Earthquake focal mechanism solutions, used to estimate the present-day stress state, revealed that the direction of maximum compression is approximately N$70^{\circ}$E and that the stress condition is in favor of either strike-slip or reverse movement on the fault. The strike of the fault is not ideal for slip under the present-day stress field and thus the fault has a low slip tendency. However, the fault may be able to slip if the frictional coefficient (${\mu}$), representing the resistance of the fault to slip, is sufficiently low (e.g., ${\mu}$ < 0.25).

키워드

참고문헌

  1. Baag, C,-E., Shin, J. S., Chi, H. C., Kang, I.-B. and Ryoo, Y., 1998, Fault-plane solutions of the December 13, 1996 Yeongweol earthquake, Journal of the Korean Geophysical Society, 1, 1, 23-30.
  2. Byerlee, J. D., 1978, Friction of Rocks, Pageoph, 116, 615-626. https://doi.org/10.1007/BF00876528
  3. Caine, J. S., Evans, J. P. and Forster, C. B., 1996. Fault zone architecture and permeability structure. Geology, 24, 1125-1128.
  4. Chang, C., Lee, J. B. and Kang, T.-S., 2010, Interaction between regional stress state and faults: Complementary analysis of borehole in situ stress and earthquake focal mechanism in southeastern Korea. Tectonophysics, 485, 164-177. https://doi.org/10.1016/j.tecto.2009.12.012
  5. Chang, C. J. and Chang, T. W., 1998, Movement History of the Yangsan Fault based on Paleostress Analysis. The Journal of Engineering Geology, 8, 1, 35-49.
  6. Choi, P. Y., Kwon, S. K., Hwang, J. H. Lee, S. R. and An, G. O., 2001, Paleostress analysis of the Pohang-Ulsan area, Southeast Korea: Tectonic sequence and timing og block rotation. Geosciences Journal, 5, 1-18. https://doi.org/10.1007/BF02910169
  7. Crawford, B. R., Faulkner, D. R. and Rutter, E. H., 2008. Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz-clay fault gouge. Journal of Geophysical Research 113, 1-14.
  8. Dong-A geologic consultant, 1975, Geological survey report of Gangneung Coal-field, Korea Institute of Geoscience and Mineral Resources, 54 p.
  9. Haimson, B. C., Lee, M. Y. and Song, I., 2003, Shallow hydraulic fracturing measurements in Korea support tectonic and seismic indicators of regional stress, International Journal of Rock Mechanics & Mining Sciences, 40, 1243-1256. https://doi.org/10.1016/S1365-1609(03)00119-9
  10. Hwang, J. H., 1994, Reconstitution of Paleostress in the Southeastern Korean Peninsula since the Early Cretaceous. Journal of the Geological Society of Korea. 30, 1, 27-34.
  11. Hwang, J. H., Kihm, Y. H. and Kim, S. W., 2011, Geological structure and Fault chronology of the Aninjinri area, north-east end of the Gangneung Coal-field. Journal of the Geological Society of Korea, 47, 4, 411-421.
  12. Jun, M. S. 1991, Body-wave analysis for shallow intraplate earthquakes in the Korean Peninsula and Yellow Sea, Tectonophysics, 192, 3, 345-357. https://doi.org/10.1016/0040-1951(91)90108-5
  13. Jun, M. S. and Jeon, J. S., 2010, Focal Mechanism in and around the Korean Peninsula, Korean Society of Earth and Exploration Geophysicists, 13, 3, 198-202.
  14. Jun, M. S. and Kulhanek, O., 1991, Source parameters of earthquakes in and around the Korean Peninsula deduced from spectral analysis, Phys. Earth Planet. Inter., 65, 255-266. https://doi.org/10.1016/0031-9201(91)90132-2
  15. Kee, W.-S., Kim, B. C., Hwang, J. H., Song, K.-Y. and Kihm. Y.-H., 2007a, Structural Characteristics of Quaternary revers faulting on the Eupcheon Fault, SE Korea. Journal of the Geological Society of Korea. 43, 3, 311-333.
  16. Keller, E. A. and Pinter, N., 1999, Active Tectonics: Earthquakes, Uplift, and Landscape, Prentice Hall, New Jersey, 338 p.
  17. KEPRI, 2002, Aerial Photograph Interpretation for Active Fault and Case Studies, p. 26 (TM.01NS17.P2002.)
  18. Kihm, Y. H. and Hwang, J. H., 2011, Geological report of the Gangneung-Jumunjin sheets. Korea Institute of Geoscience and Mineral Resources, 74 p.
  19. Kihm, Y. H., Hwang, J. H. and Kim, S. W., 2012, Geological structures of the northern Gangneung coalfield. Journal of the Geolical Society of Korea, 48, 2, 131-147.
  20. KIGAM, 2007, Development on Techology of Real Time Seismic Data Analysis and Quantitative Earthquake Hazard Prediction, GP2007-006-02, 27 p.
  21. Lee, J. B. and Chang, C., 2009, Slip tendency of Quaternary faults in southeast Korea under current state of stress. Geosciences Journal, 13(4), 353-361. https://doi.org/10.1007/s12303-009-0033-1
  22. Moon, T.-H., Son, M., Chang, T. W. and Kim, I.-S., 2000, Paleostress Reconstruction in the Tertiary Basin Areas in Southeastern Korea, Journal of Earth Science society, 21, 3, 230-249.
  23. Reinecker, J., Heidbach, O. and Mueller, B., 2003, The 2003 release of the World Stress Map availablvje online at www.world-stressmap.org(December 4, 2003).
  24. Ryoo, C.-R., Lee, B. J., Son, M., Lee, Y. H., Choi, S.-J. and Chwae, U.-C., 2002, Quaternary faults in Gaegok-ri, Oedong-eup, Gyeongju, Korea. Journal of the Geological Society of Korea. 38, 3, 309-323.
  25. Scholz, C. H., 2000, Evidence for a strong San Andreas fault, Geology, 28, 163-166. https://doi.org/10.1130/0091-7613(2000)28<163:EFASSA>2.0.CO;2
  26. Son, C. M., 1966, Geologic Structure in the Eastern Part of Gangreung Coal Field. Journal of the Geological Society of Korea. 2, 2, 8-18.
  27. Son, M. and Kim, I.-S., 2005, Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications. The 21th Annual Conference of the Geological Society of Korea, KHNP, May 20, 7-31 p.
  28. Stewart, I. S. and Hancock, P. L., 1994, Neotectonics. In: Hancock, P.L. (ed.), Continental deformation. Pergamon Press, 370-409.
  29. Stock, J. M., Healy, J. H., Hickman, S. H. and Zoback, M. D., 1985, Hydraulic fracturing stress measurements at Yucca Mountain, Nevada, and relationship to the regional stress field, Journal of Geophysical Research, 90(B10), 8691-8706. https://doi.org/10.1029/JB090iB10p08691
  30. Tembe, S., Lockner, D. A. and Wong, T.-F., 2010. Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite. Journal of Geophysical Research 115, 1-22.
  31. Zoback, M. D. and Healy, J. H., 1984, Friction, faulting and in situ stress, Annales Geophysicae, 2, 6, 689-698.
  32. Zoback, M. D. and Healy, J. H., 1992, In situ stress measurements to 3.5km depth in the Cajon Pass scientific research borehole: implications for the mechanics of crustal faulting, Journal of Geophysical Research, 97(B4), 5039-5057. https://doi.org/10.1029/91JB02175