DOI QR코드

DOI QR Code

Non Darcy Mixed Convection Flow of Magnetic Fluid over a Permeable Stretching Sheet with Ohmic Dissipation

  • Zeeshan, A. (Department of mathematics and statistics, FBAS, International Islamic university) ;
  • Majeed, A. (Department of mathematics and statistics, FBAS, International Islamic university)
  • Received : 2016.01.18
  • Accepted : 2016.03.08
  • Published : 2016.03.31

Abstract

This paper aims to discuss the Non Darcy boundary layer flow of non-conducting viscous fluid with magnetic ferroparticles over a permeable linearly stretching surface with ohmic dissipation and mixed convective heat transfer. A magnetic dipole is applied "a" distance below the surface of stretching sheet. The governing equations are modeled. Similarity transformation is used to convert the system of partial differential equations to a system of non-linear but ordinary differential equations. The ODEs are solved numerically. The effects of sundry parameters on the flow properties like velocity, pressure, skin-friction coefficient and Nusselt number are presented. It is deduced the frictional resistance of Lorentz force decreases with stronger electric field and the trend reverses for temperature. Skin friction coefficient increase with increase in ferromagnetic interaction parameter. Whereas, Nusselt number decrease.

Keywords

References

  1. R. E. Rosensweig, Ferrohydrodynamics, Dover Publications, Inc. New York (1997).
  2. J. L. Neuringer, J. Non-linear Mech. 1, 123 (1966). https://doi.org/10.1016/0020-7462(66)90025-4
  3. R. Ganguly, S. Sen, and I. K. Puri, J. Magn. Magn. Mater. 271, 63 (2014).
  4. M. Sheikholeslami and D. D. Ganji, Energy 75, 400 (2014). https://doi.org/10.1016/j.energy.2014.07.089
  5. M. Sheikholeslami, D. D. Ganji, and M. M. Rashidi, J. Taiwan Institute of Chemical Engineers 47, 6 (2015). https://doi.org/10.1016/j.jtice.2014.09.026
  6. M. S. Kandelousi and R. Ellahi, Zeitschrift fur Naturforschung A 70, 115 (2015).
  7. A. Zeeshan, R. Ellahi, and M. Hassan, The European Physical Journal Plus. 129, 1 (2014). https://doi.org/10.1140/epjp/i2014-14001-y
  8. S. Rashidi, M. Dehghan, R. Ellahi, M. Riaz, and M. T. Jamal-Abad, J. Magn. Magn. Mater. 378, 128 (2015). https://doi.org/10.1016/j.jmmm.2014.11.020
  9. R. Ellahi, Applied Mathematical Modelling 37, 1451 (2013). https://doi.org/10.1016/j.apm.2012.04.004
  10. E. M. A. Elbashbeshy, Appl. Math. Computation. 136, 139 (2003). https://doi.org/10.1016/S0096-3003(02)00023-1
  11. S. Whitaker, Transport in Porous Media 25, 27 (1996). https://doi.org/10.1007/BF00141261
  12. D. Pal and H. Mondal, Comm. Nonl. Sci. and Num. Sim. 15, 1197 (2010). https://doi.org/10.1016/j.cnsns.2009.05.051
  13. C. H. Chen, Int. J. Eng. Sci. 42, 699 (2004). https://doi.org/10.1016/j.ijengsci.2003.09.002
  14. D. Pal and H. Mondal, Comm. Nonl. Sci. and Num. Sim. 15, 1553 (2010). https://doi.org/10.1016/j.cnsns.2009.07.002
  15. H. I. Andersson and O. A. Valnes, Acta Mechanica. 128, 39 (1998). https://doi.org/10.1007/BF01463158
  16. A. Zeeshan, A. Majeed, and R. Ellahi, Journal of Molecular Liquids. 215, 549 (2016). https://doi.org/10.1016/j.molliq.2015.12.110

Cited by

  1. Numerical Study of Entropy Generation with Nonlinear Thermal Radiation on Magnetohydrodynamics non-Newtonian Nanofluid Through a Porous Shrinking Sheet vol.21, pp.3, 2016, https://doi.org/10.4283/JMAG.2016.21.3.468
  2. Magnetic source impact on nanofluid heat transfer using CVFEM pp.1433-3058, 2016, https://doi.org/10.1007/s00521-016-2740-7
  3. Hydromagnetic nanofluid flow past a stretching cylinder embedded in non-Darcian Forchheimer porous media pp.1433-3058, 2018, https://doi.org/10.1007/s00521-017-2934-7
  4. Entropy Generation on Nanofluid Flow through a Horizontal Riga Plate vol.18, pp.6, 2016, https://doi.org/10.3390/e18060223
  5. Combined effects of ferromagnetic particles and magnetic field on mixed convection in the Falkner-Skan system using DRA vol.29, pp.2, 2019, https://doi.org/10.1108/HFF-03-2018-0105