Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.1.153

Non Darcy Mixed Convection Flow of Magnetic Fluid over a Permeable Stretching Sheet with Ohmic Dissipation  

Zeeshan, A. (Department of mathematics and statistics, FBAS, International Islamic university)
Majeed, A. (Department of mathematics and statistics, FBAS, International Islamic university)
Publication Information
Abstract
This paper aims to discuss the Non Darcy boundary layer flow of non-conducting viscous fluid with magnetic ferroparticles over a permeable linearly stretching surface with ohmic dissipation and mixed convective heat transfer. A magnetic dipole is applied "a" distance below the surface of stretching sheet. The governing equations are modeled. Similarity transformation is used to convert the system of partial differential equations to a system of non-linear but ordinary differential equations. The ODEs are solved numerically. The effects of sundry parameters on the flow properties like velocity, pressure, skin-friction coefficient and Nusselt number are presented. It is deduced the frictional resistance of Lorentz force decreases with stronger electric field and the trend reverses for temperature. Skin friction coefficient increase with increase in ferromagnetic interaction parameter. Whereas, Nusselt number decrease.
Keywords
Ferromagnetic particle; Buoyancy effects; line source dipole; Non-Darcy Porous medium; ohmic dissipation; heat transfer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. E. Rosensweig, Ferrohydrodynamics, Dover Publications, Inc. New York (1997).
2 J. L. Neuringer, J. Non-linear Mech. 1, 123 (1966).   DOI
3 R. Ganguly, S. Sen, and I. K. Puri, J. Magn. Magn. Mater. 271, 63 (2014).
4 M. Sheikholeslami and D. D. Ganji, Energy 75, 400 (2014).   DOI
5 M. Sheikholeslami, D. D. Ganji, and M. M. Rashidi, J. Taiwan Institute of Chemical Engineers 47, 6 (2015).   DOI
6 M. S. Kandelousi and R. Ellahi, Zeitschrift fur Naturforschung A 70, 115 (2015).
7 A. Zeeshan, R. Ellahi, and M. Hassan, The European Physical Journal Plus. 129, 1 (2014).   DOI
8 S. Rashidi, M. Dehghan, R. Ellahi, M. Riaz, and M. T. Jamal-Abad, J. Magn. Magn. Mater. 378, 128 (2015).   DOI
9 R. Ellahi, Applied Mathematical Modelling 37, 1451 (2013).   DOI
10 E. M. A. Elbashbeshy, Appl. Math. Computation. 136, 139 (2003).   DOI
11 S. Whitaker, Transport in Porous Media 25, 27 (1996).   DOI
12 D. Pal and H. Mondal, Comm. Nonl. Sci. and Num. Sim. 15, 1197 (2010).   DOI
13 C. H. Chen, Int. J. Eng. Sci. 42, 699 (2004).   DOI
14 D. Pal and H. Mondal, Comm. Nonl. Sci. and Num. Sim. 15, 1553 (2010).   DOI
15 H. I. Andersson and O. A. Valnes, Acta Mechanica. 128, 39 (1998).   DOI
16 A. Zeeshan, A. Majeed, and R. Ellahi, Journal of Molecular Liquids. 215, 549 (2016).   DOI