• 제목/요약/키워드: frictional coefficients

검색결과 113건 처리시간 0.025초

마이크로핀관내 냉동기유가 초임계 이산화탄소의 열전달과 압력강하에 미치는 영향 (Effect of the lubrication oil on heat transfer and pressure drop characteristics of supercritical carbon dioxide in a microfin tube)

  • 구학근
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1440-1446
    • /
    • 2012
  • 본 논문은 수평 마이크로핀관내 초임계 $CO_2$와 PAG 혼합물의 열전달과 압력강하 특성에 대해서 실험적으로 연구한 것이다. $CO_2$와 PAG 혼합물의 열전달계수는 압력이 10 MPa이고, 질량유속은 520 kg/$m^2s$이며, PAG 오일 농도는 0.06~2.26%에서 측정하였다. PAG 오일농도가 0.3%인 경우, $CO_2$와 PAG 혼합물의 열전달계수와 압력강하는 순수 $CO_2$ 냉매의 열전달계수와 동일한 경향을 나타내었다. 그리고 PAG 질량농도가 2.26%인 경우, 초임계 온도근처에서 측정한 열전달계수는 순수 $CO_2$의 열전달계수 보다 약 50%정도 낮게 나타났다. 마찰압력강하는 $60^{\circ}C$$CO_2$ 평균온도에서 순수 $CO_2$의 압력강하보다 약 1.6배 더 높게 나타났다.

오블롱 셀 플레이트 열교환기에서의 R-l34a, R-407C, R-410A의 응축성능에 관한 실험적 연구 (Study on R-l34a, R-407C, and R-410A Condensation Performance in the Oblong Shell and Plate Heat Exchanger)

  • 박재홍;김영수
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1535-1548
    • /
    • 2004
  • Condensation heat transfer experiments were conducted with the oblong shell and plate heat exchanger without oil in a refrigerant loop using R-l34a, R-407C and R-410A. An experimental refrigerant loop has been developed to measure the condensation heat transfer coefficient h$_{r}$ and frictional pressure drop $\Delta$p$_{f}$ of the various refrigerants in a vertical oblong shell and plate heat exchanger. The effects of the refrigerant mass flux(40∼80kg/$m^2$s), average heat flux(4∼8kW/$m^2$), refrigerant saturation temperature(30∼4$0^{\circ}C$) and vapor quality of refrigerants on the measured data were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. A comparison of the performance of the various refrigerants revealed that R-410A had the highest heat transfer performance followed by R-l34a, and R-407C had the lowest performance of the refrigerants tested. The pressure drops were also reported in this paper. The pressure drops for R-410A were approximately 45% lower than those of R-l34a. R-407C had 30% lower pressure drops than R-l34a. Experimental results were compared with several correlations which predicted condensation heat transfer coefficients and frictional pressure drops. Comparison with the experimental data showed that the previously proposed correlations gave unsatisfactory results. Based on the present data, empirical correlations of the condensation heat transfer coefficient and the friction factor were proposed.tor were proposed.sed.

지오스트립/샌드페이퍼 계면에서의 마찰특성 평가 (Evaluation of Friction Properties between Geostrip/Sandpaper Interface)

  • 임지혜;변성원;전한용
    • 한국지반신소재학회논문집
    • /
    • 제5권4호
    • /
    • pp.27-33
    • /
    • 2006
  • 흙 입자의 크기를 고려한 5종류의 샌드페이퍼를 사용하여 지오스트립/샌드페이퍼 계면에서의 마찰특성을 평가하였으며, 전단력에 의한 마찰계수와 마찰각 등을 구하였다. 설계강도가 각각 50, 70, 100KN/m인 3종류의 지오스트립이 사용되었으며, 입자 크기가 각각 P100, 220, 320, 400, 600인 5종류의 샌드페이퍼가 사용되었다. 지오스트립의 설계강도에 따라 전단강도는 큰 차이를 나타내지 않았으며, 이는 전단 시 접촉되는 지오스트립 표면이 강도에 따라 차이가 나지 않고 비슷하기 때문이다. 샌드페이퍼의 입자의 크기가 클수록 더 큰 전단강도 값을 나타내었으며, 지오스트립/P100 계면에서 가장 큰 값을 나타내었다. 끝으로 모든 시료의 경우 post-peak 강도 감소 현상이 나타났으며, 이는 전단 시험에 의한 지오스트립 표면 의 마모에 기인한다.

  • PDF

제동패드의 구조와 마찰재 조성이 제동 스킬소음에 미치는 영향 (Effect of Pad Structure and Friction Material Composition on Brake Squeal Noise)

  • 구병춘;김재철;이범주;박형철;나선주
    • 한국철도학회논문집
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2017
  • 제동 스킬소음은 승객과 선로 주변의 주민에게 불편을 끼쳐 시급히 해결해야 할 문제의 하나이지만 해결책을 찾는 것은 쉽지 않다. 제동 스킬소음을 저감하기 위한 해결책은 크게 제동 마찰재의 소재를 개량하거나 제동패드의 구조를 개선하는 것으로 구분할 수 있다. 본 연구에서는 현재 KTX 차량에 사용되고 있는 제동패드를 기준으로 마찰재의 소재만을 바꾼 패드와, 동일한 마찰재 소재를 사용하지만 구조를 유연형으로 바꾼 제동패드를 제작하여 제동 다이나모미터에서 다양한 조건으로 마찰특성과 소음특성을 평가하고 영업차량이 역에 정차할 때 측정한 스킬소음과 비교 및 분석하였다. 제동 다이나모미터 시험이 실차 시험을 어느 정도 재현하는 것이 가능한다는 것을 발견하였고, 영업열차에서 최고 스킬소음이 발생한 4,500Hz 대역의 스킬소음은 다이나모미터 시험에서도 정확히 일치하고, 이 주파수는 제동디스크의 고유진동수와 일치하는 것을 규명하였다. 제동 스킬소음이 발생하는 주파수는 캘리퍼에 작용하는 압력, 시험온도, 그리고 제동 초속도에 따라 달라지지만 일정한 경향을 보여주지는 않았다. 개발된 제동패드의 평균 마찰계수는 0.35~0.45의 범위에 있고 마찰재 소재만을 바꾼 경우는 21.6dB(A), 구조를 변경한 경우는 17.3dB(A) 만큼 최대 소음을 줄일 수 있었다.

The Lubricant Effect of Oxidation and Wear Products of HVOF Co-alloy T800 Powder Coating

  • Cho, Tong Yul;Yoon, Jae Hong;Kim, Kil Su;Song, Ki Oh;Youn, Suk Jo;Chun, Hui Gon;Hwang, Soon Young
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.159-163
    • /
    • 2007
  • Micron size Co-alloy 800 (T800) powder is coated on the high temperature, oxidation and corrosion resistant super alloy Inconel 718 substrate by the optimal high velocity oxy-fuel (HVOF) thermal spray coating process developed by this laboratory. For the study of durability improvement of high speed spindle operating without lubricants, friction and sliding wear behaviors of the coatings are investigated both at room and at an elevated temperature of $1000^{\circ}F(538^{\circ}C)$. Friction coefficients, wear traces and wear debris of coatings are drastically reduced compared to those of non-coated surface of Inconel 718 substrate both at room temperature and at $538^{\circ}C$. Friction coefficients and wear traces of both coated and non-coated surfaces are drastically reduced at higher temperature of $538^{\circ}C$ compared with those at room temperature. At high temperature, the brittle oxides such as CoO, $Co_{3}O_{4}$, $MoO_2$ and $MoO_3$ are formed rapidly on the sliding surfaces, and the brittle oxide phases are easily attrited by reciprocating slides at high temperature through oxidation and abrasive wear mechanisms. The brittle solid oxide particles, softens, melts and partial-melts play roles as solid and liquid lubricants reducing friction coefficient and wear. These show that the coating is highly recommendable for the durability improvement coating on the machine component surfaces vulnerable to frictional heat and wear.

초고속 회전체의 내구성향상을 위한 Co-alloy(T800)의 초고속 용사코팅 (HVOF Spray Coating of Co-alloy(T800) for the Improvement of durability of High Speed Spindle)

  • 조동율;윤재홍;김길수;윤석조;백남기;박병철;천희곤
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.32-37
    • /
    • 2006
  • Micron size Co-alloy(T800) powder was coated on Inconel 718 by HVOF thermal spraying for the studies of the improvement of durability of high speed spindle by using Taguchi program for the parameters of spray distance, flow rates of hydrogen and oxygen and powder feed rate. The optimal coating process was determined by the studies of coating properties such as micro-structure, porosity, surface roughness and micro hardness. Friction and wear behaviors of coatings were investigated by sliding wear test at room temperature and $1000^{\circ}F(538^{\circ}C)$. At both room temperature and $538^{\circ}C$ the sliding wear debris and friction coefficients of the coating were drastically reduced compared with the surface of non-coated parent material. This shows that Co-alloy powder coating is highly recommendable for the durability improvement surface coating of high speed air-bearing spindle. At high temperature wear traces and friction coefficients of both coating and non-coating were drastically reduced compared with those of room temperature since the brittle oxides were formed easily on the surface, and the brittle oxide phases were attrited by the reciprocating sliding wear according to the complicated mixed wear mechanisms These oxide particles, partially melts and the melts play role as lubricant and reduce the wear and friction coefficient. This also shows that Co-alloy powder coating is highly recommendable far the durability improvement surface coating on the surface vulnerable to frictional heat such as high speed spindles.

양극산화 알루미늄 합금6061의 초순수 물 윤활에서의 트라이볼로지적 특성 (Tribological Characteristics of Anodized Al 6061 Under Deinoized Water Lubricated Reciprocating Condition)

  • 정준호;조민행
    • Tribology and Lubricants
    • /
    • 제33권2호
    • /
    • pp.59-64
    • /
    • 2017
  • This study investigates friction and wear characteristics of anodized aluminum (Al) alloy 6061 by using a reciprocating tribotester. The diameter and height of the specimen are 30 mm and 10 mm, respectively. The surface roughness of the mirrored-surface is approximately $0.01{\sim}0.02{\mu}m$, and it is used throughout the current study. As a result of anodizing, the depth and diameter of the nanopore are approximately $25{\mu}m$ and 30-40 nm, respectively. The testing conditions are as follows: loads of 1, 3, and 5 N; a frequency of 1 Hz; a stoke of 3 mm; and a duration of 1800 s. We use deionized water with a volume of approximately $25{\mu}l$, as the lubricant. Micro Vickers hardness measurements show that mirrored-surface specimens had lower hardness values than anodized specimens. Further, their coefficients of friction are lower than those of the anodized samples, and the width of their wear track increases with load, as expected. The anodized specimens' coefficients of friction increase with stable frictional behavior and exhibit insignificant load dependence. Further, we observe that the width of the wear track is less than that of the mirrored-surface specimens, and micro cracks are present near it. Moreover, the anodizing process increases the hardness of the samples, improving their wear resistance. These results indicate that nanoporous structures are not effective in lowering friction under the water-lubricated condition.

침자 술기 실습 모델에서 침감의 정량적 특성에 관한 연구 (A Study on the Quantitative Characteristics of Needle Force on the Acupuncture Practical Model)

  • 이연선;김선혜;김은정;이승덕;김경호;김갑성;정찬영
    • Korean Journal of Acupuncture
    • /
    • 제35권3호
    • /
    • pp.149-158
    • /
    • 2018
  • Objectives : In this study, we quantitatively evaluated the needle forces using needle insertion-measurement system and compared the needle sensation of each acupuncture practical model. Methods : After inserting acupuncture with a sensor to six models, a lifting-thrusting motion was implemented using the needle insertion-measurement system. The needle force was measured repeatedly, and the measurement was analyzed based on the modified Karnopp friction model for a comparison of friction coefficients. After the insertion, practitioners did lifting-thrusting manipulations. They quantified the similarity of needle sensation with VAS (Visual Analogue Scale). Results : When friction force and coefficients of friction in five different models were compared with a porcine shank model, all five models were significantly different from a porcine shank model, cotton and apple showing the closest frictional values to that of a porcine shank model. In the Cp and Cn values of cotton and in the Cp values of IM injection pad, there was no statistically significant difference. The similarity of the needle sensation between the porcine shank and five models was the highest in the apple, and overlapping papers was the lowest. Conclusions : This study quantitatively compared the physical forces in the practical model when implementing lifting-thrusting manipulations, using a needle insertion-measurement system. We suggest that a reproducible exercise model that reflects the characteristics of various human tissues, such as viscoelasticity or strength, needs to be further developed. This will contribute to establishing standardized acupuncture practice training.

A Study on the Friction and Wear Properties of Tribaloy 800 Coating by HVOF Thermal Spraying

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Youn, Suk-Jo;Song, Ki-Oh;Back, Nam-Ki;Chun, Hui-Gon;Hwang, Soon-Young
    • 한국표면공학회지
    • /
    • 제39권5호
    • /
    • pp.240-244
    • /
    • 2006
  • Tribaloy 800 (T800) powder is coated on the Inconel 718 substrate by the optimal High Velocity Oxy-Fuel (HVOF) thermal spray coating process developed by this laboratory. For the study of the possibility of replacing of the widely used classical chrome plating, friction, wear properties and sliding wear mechanism of coatings are investigated using reciprocating sliding tester both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C). Both at room temperature and at $538^{\circ}C$, friction coefficients and wear debris of coatings are drastically reduced compared to those of non-coated surface of Inconel 718 substrate. Friction coefficients and wear traces of both coated and non-coated surfaces are drastically reduced at higher temperature of $538^{\circ}C$ compared with those at room temperature. At high temperature, the brittle oxides such as $CoO,\;Co_3O_4,\;MoO_2,\;MoO_3$ are formed rapidly on the sliding surfaces, and the brittle oxide phases are easily attrited by reciprocating slides at high temperature through complicated mixed wear mechanisms. The sliding surfaces are worn by the mixed mechanisms such as oxidative wear, abrasion, slurry erosion. The brittle oxide particles and melts and partial-melts play roles as solid and liquid lubricant reducing friction coefficient and wear. These show that the coating is highly recommendable for the durability improvement coating on the surfaces vulnerable to frictional heat and wear.

철도차량용 금속계 소결마찰재의 조성에 따른 트라이볼로지 특성 (Effects of Composition of Metallic Friction Materials on Tribological Characteristics on Sintered Metallic Brake Pads and Low-Alloy Heat-Resistance Steel for Trains)

  • 양용준;이희성
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.330-336
    • /
    • 2014
  • Sintered metallic brake pads and low alloy heat resistance steel disks are applied to mechanical brake systems in high energy moving machines that are associated with recently developed 200km/h trains. This has led to the speed-up of conventional urban rapid transit. In this study, we use a lab-scale dynamometer to investigate the effects of the composition of friction materials on the tribological characteristics of sintered metallic brake pads and low alloy heat resistance steel under dry sliding conditions. We conduct test under a continuous pressure of 5.5 MPa at various speeds. To determine the optimal composition of friction materials for 200 km/h train, we test and the evaluate frictional characteristics such as friction coefficients, friction stability, wear rate, and the temperature of friction material, which depend on the relative composition of the Cu-Sn and Fe components. The results clearly demonstrate that the average friction coefficient is lower for all speed conditions, when a large quantity of iron power is added. The specimen of 25 wt% iron powder that was added decreased the wear of the friction materials and the roughness of the disc surface. However when 35 wt% iron powder was added, the disc roughness and the wear rate of friction materials increased By increasing the amount of iron powder, the surface roughness, and temperature of the friction materials increased, so the average friction coefficients decreased. An oxidation layer of $Fe_2O_3$ was formed on both friction surfaces.