DOI QR코드

DOI QR Code

Effect of the lubrication oil on heat transfer and pressure drop characteristics of supercritical carbon dioxide in a microfin tube

마이크로핀관내 냉동기유가 초임계 이산화탄소의 열전달과 압력강하에 미치는 영향

  • Ku, Hak-Keun (Department of refrigeration and air-conditioning engineering, Tongmyong University)
  • 구학근 (동명대학교 냉동공조공학과)
  • Received : 2012.01.06
  • Accepted : 2012.04.12
  • Published : 2012.04.30

Abstract

This paper presents an experimental study of heat transfer and pressure drop characteristics of supercritical carbon dioxide with PAG inside a horizontal microfin tube. Heat transfer coefficient and pressure drop gradients were measured at 10 MPa in pressure and 520 kg/$m^2s$ in mass flux with variation of PAG mass concentration from 0.06% to 2.26%. The tendencies of both heat transfer and frictional pressure drop characteristics show the same as those of pure $CO_2$ up to 0.3% in PAG mass concentration. In case of 2.26% in PAG mass concentration, measured heat transfer coefficients showed 50% lower than those of pure $CO_2$ near the pseudocritical temperature and measured frictional pressure drop gradients show 1.6 times higher in comparison with those of pure $CO_2$ at $60^{\circ}C$ in $CO_2$ bulk temperature.

본 논문은 수평 마이크로핀관내 초임계 $CO_2$와 PAG 혼합물의 열전달과 압력강하 특성에 대해서 실험적으로 연구한 것이다. $CO_2$와 PAG 혼합물의 열전달계수는 압력이 10 MPa이고, 질량유속은 520 kg/$m^2s$이며, PAG 오일 농도는 0.06~2.26%에서 측정하였다. PAG 오일농도가 0.3%인 경우, $CO_2$와 PAG 혼합물의 열전달계수와 압력강하는 순수 $CO_2$ 냉매의 열전달계수와 동일한 경향을 나타내었다. 그리고 PAG 질량농도가 2.26%인 경우, 초임계 온도근처에서 측정한 열전달계수는 순수 $CO_2$의 열전달계수 보다 약 50%정도 낮게 나타났다. 마찰압력강하는 $60^{\circ}C$$CO_2$ 평균온도에서 순수 $CO_2$의 압력강하보다 약 1.6배 더 높게 나타났다.

Keywords

References

  1. J. Pettersen, R. Rieberer, A. Leister, Heat transfer and pressure drop characteristics of supercritical carbon dioxide in microchannel tubes under cooling, in: Preliminary Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, July 25-28, pp. 99-106, 2000.
  2. G. Kuang, M.M. Ohadi, Y. Zhao, Experimental study on gas cooling heat transfer for supercritical $CO_{2}$ in microchannels, in: Seco nd International Conference on Microchannels and Minichannels, June 17-19, Rochester, New York, USA, pp. 325-332, 2004.
  3. C. Kondou, P. Hrnjak, Heat rejection from R744 flow under uniform temperature cooling in a horizontal smooth tube around the critical point, International Journal of Refrigeration, Vol. 34, pp. 719-731, 2011. https://doi.org/10.1016/j.ijrefrig.2010.11.003
  4. K. Hambraeus, Heat transfer coefficient during two phase flow boiling of HFC-134a, International Journal of Refrigeration, Vol. 14, pp 357-362, 1991. https://doi.org/10.1016/0140-7007(91)90033-D
  5. G. Kuang, M.M. Ohadi, Y. Zhao, Experimental study of miscible and immiscible oil effects on heat transfer coefficients and pressure drop in microchannel gas cooling of supercritical $CO_{2}$, in: Proceedings of the HT 2003, ASME Summer Heat transfer Conference, June 21-23, Las Vegas, Nevada, USA, pp. 671-675, 2003.
  6. E.W. Lemmon, M.L. Huber, M.O. McLinden, Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23 Version 8.0 (2007).
  7. S.H. Yoon, J.H. Kim, Y.W. Hwang, M.S. Kim, K. Min, Y. Kim, Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region, International Journal of Refrigeration, Vol. 26, pp. 857-864, 2003. https://doi.org/10.1016/S0140-7007(03)00096-3
  8. C. Dang, E. Hihara, In-tube cooling heat transfer of supercritical carbon dioxide, Part 1. Experimental measurement, International Journal of Refrigeration, Vol. 27, pp. 736-747, 2004. https://doi.org/10.1016/j.ijrefrig.2004.04.018