• Title/Summary/Keyword: friction pad

Search Result 236, Processing Time 0.028 seconds

Slider-Bearing Design with Micro-Machined Wavy-Cavity: Parametric Characterization of Thermohydrodynamic-Operation-Scheme

  • Ozalp B. Turker;Ozalp A. Alper
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1590-1606
    • /
    • 2006
  • Slider bearings are widely applied in mechanical systems, where the design needs cover increased load capacity, lowered friction and power consumption and creative designs. This work is governed to perform a parametric characterization, by generating a novel structure on the upper slider surface, which can formally be expressed in micro-machined wavy-form, where the individual and combined influences of various structural design parameters and boundary conditions, on the performance records, are also evaluated. Computations put forward that the contribution of the wave amplitude on power loss values is highly dependent on the level of inlet pressure; higher amplitudes are determined to increase power loss in the lowest inlet pressure case of 1.01, whereas the contrary outcome is determined in the higher inlet pressure cases of 3.01 & 5.01. Designing the slider bearing system, based on optimal load capacity, produced the optimum wave number ranges as 10-45, 7-11 and 5-8 for the pad inclinations of $5^{\circ},\;4^{\circ}$ and $3^{\circ}$ respectively.

The Invention of New Electro-Mechanical Brake Calipers Utilizing Patent Analysis Results (특허분석 결과를 활용한 새로운 전기기계 브레이크의 발명)

  • Han, In-Hwan;Park, Sang-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.125-132
    • /
    • 2007
  • Within the framework of brake-by-wire technology, this paper presents five types of novel models of electro-mechanical disk brake calipers with self-servo mechanism which provides self-servo effect of boosting a friction force generated between the brake pad and the rotor disk surface. The models have been developed utilizing patent map analysis results of previous invents of electro-mechanical brake calipers. The feasibility of the developed motor-driven brake caliper models have been validated through the dynamic simulation analysis. Among the developed models, the caliper mechanism with separated pressure plate was designed especially in detail and was made as a pilot. The pilot caliper has been installed on the simple test bed constructed with domestic passenger car brake components, and its function and effectiveness have been validated through several types of experimental tests.

Experimental Analysis of Tribological Performances of Padder Slider in HDD (하드 디스크 드라이브용 패드 슬라이더의 트라이볼로지 특성에 관한 실험적 연구)

  • 홍수열;좌성훈;고정석;이형재
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.312-320
    • /
    • 2001
  • In magnetic hard disk drives, higher areal recording density requires reduction of head-disk spacing. To overcome the increase of stiction associated with reduction of head-disk spacing, a padder slider, which adds pads to slider's air bearing surface, can be one of the practical solution for sub 20 nm flying height, and even for near contact recording. This study investigated the tribological characteristics of a padder slider. A padder slider took off slowly but showed less friction force than a normal slider. The hot/dry CSS test and drag test indicated that pad wear of a padder slider was negligible. The tribological performance of disk is an important factor to be considered. In particular, less carbon overcoat layer of the disk will result in higher stiction and wear in slider/disk interface. In conclusion, a padder slider shows encouraging tribological performances for practical use in HDD.

Longitudinal Ultrasonic Bonding of Strip-type Au Bumps (스트립 형상인 Au 범프의 종방향 초음파 접합)

  • 김병철;김정호;이지혜;유중돈;최두선
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.62-68
    • /
    • 2004
  • The strip Au bumps are bonded using longitudinal ultrasonic far the electronic package. Au bumps on the chip and substrate are aligned in a crossed shape, and the ultrasonic is imposed on the chip to form the solid-state bond between the Au bumps. Deformed bump shapes are calculated using the finite element method, and the bond strength is measured experimentally. The crossed strip Au bumps are deformed similar to the saddle, which provides larger contact surface area and higher friction force. Compared with the previous bonding method between the Au bump and planar pad, higher bond strength is obtained using the crossed strip bumps.

Analysis of FE/test result for con011ing the squeal noise of wheel brake system (휠제동장치의 스퀼소음 제어를 위한 해석결과 분석)

  • Cha, Jung-Kwon;Park, Yeong-Il;Lee, Dong-Kyun;Cho, Dong-Hun
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.595-600
    • /
    • 2009
  • Passengers in a vehicle feel uncomfortable due to squeal noise. Squeal noise, a kind of self-excited vibration, is generated by the friction force between the disc and the pad of the automobile. In this paper, modal analysis of wheel brake system was performed in order to prediction of squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. Finite element model of that brake system was made. Some parts of a real brake was selected and modeled. The normal mode analysis method performs analyses of each brake system component. Experiment of modal analysis was performed for each brake components and experimental results were compared with analytical result from FEM. The complex eigenvalue analysis results compared with braking test. The analysis results show good correlation with braking test for the squeal frequency at an unstable mode.

  • PDF

Development of the FE(Finite Element) model for analysing the squeal noise of wheel brake system (휠 제동 장치의 스퀼 소음 해석을 위한 해석 모델 구축)

  • Cha, Jung-Kwon;Park, Yeong-Il;Lee, Dong-Kyun;Cho, Dong-Hun;Kim, Ki-Nam;Beak, Jin-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1407-1412
    • /
    • 2008
  • Squeal of disk brake is a noise and self excited vibration with frequency range of $1{\sim}10Khz$ cause by the friction force between the disk and the pad of the automobile. Passengers in a cehicle feel uncomfortable. In this paper modal analysis of wheel brake system was performed in order to prediction of squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. finite element model of that brake system was made. Some parts of a real brake was selected and modeled. The normal mode analysis method performs analyses of each brake system component. Experiment of modal analysis was performed for each brake components and experimental results were compared with analytical result from FEM.

  • PDF

Development of the Measurement System for Evaluating Mechanical Properties of Nano-diamond Coated Film (나노 다이아몬드 코팅박막의 기계적 특성 평가를 위한 계측시스템의 개발)

  • Kweon, Hyun Kyu;Lee, So Jin;Kweon, Yong Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • In this study, a new adhesion evaluating equipment and data processing methods were developed to overcome some limitations of existing evaluating equipment. Nano-diamond coated tool is a specimen of experiment. When applying frictional force and shear force on the specimen by a rotating polishing pad, delamination occurs at a moment. During each experiment, the vibration, load, and torque is obtained by accelerometer, loadcell and torque s+ kpensor. Frictional force and coefficient of friction are obtained by calculating torque and load. Based on FFT transformation, acceleration is processed and analyzed. As a result, the moment of delamination and the load at that time can be detected by the new developed equipment and measurement system. Finally, we call this load as an Adhesion force.

Analysis of force exerted on the nose by the spectacles weight (안경의 무게에 의해 코에 작용하는 힘 해석)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.4
    • /
    • pp.273-281
    • /
    • 2005
  • The weight of spectacles fined on is resolved into its components along the nose's slide plane and the normal to the nose plane where the nosepad is located. The equation and its numerical solution to determine the component force was derived as a function of splay angle ${\Psi}$, $sin{\Psi}$, $cos{\Psi}$, and $cot{\Psi}$, incorporated with ${\theta}$ and ${\Phi}$, the angles viewed from side and front of the face, respectively. Values of inclination angle ${\theta}$ and ${\Phi}$ could be obtained to fulfill the condition where the frictional force between the nose and pad is either greater than the normal pressure exerted by the spectacles on the nose. With the value of ${\theta}$ fixed the normal pressure increases as ${\Phi}$ increases. With ${\Phi}$ fixed, the effect of ${\theta}$ is the same.

  • PDF

Analysis of Hot Judder of Disc Brakes for Automotives by Using Finite Element Method (유한 요소법을 이용한 자동차용 디스크 브레이크의 열간 저더 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Chung, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.425-431
    • /
    • 2011
  • Thermal energy generated because of the friction between the disc and pad is transferred to both sides and causes thermal expansion of the material, which affects the contact pressure distribution. This phenomenon, which is called thermoelastic instability (TEI), is affected by the natural mode of a disc. TEI results in the formation of a hot spot and causes hot judder vibrations. In this study, three-dimensional analysis of the hot judder of a ventilated disc for automotives was performed by using the commercial finite element analysis program, SAMCEF. The intermediate processor based on a staggered approach was used to exchange the result data of the mechanical and thermal model. The hot spot was formed on the surface of the disc, and the number of hot spots was compared with the natural mode of the disc.

Evaluation of Fretting Fatigue Behavior for Railway Axle Material (철도 차축재료의 프레팅 피로거동 평가)

  • Choi, Sung-Jong;Kwon, Jong-Wan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.139-145
    • /
    • 2007
  • Fretting is a kind of surface damage mechanism observed in mechanically jointed components and structures. The initial crack under fretting damage occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. This can be observed in automobile and railway vehicle, fossil and nuclear power plant, aircraft etc. In the present study, railway axle material RSA1 used for evaluation of fretting fatigue life. Plain and fretting fatigue tests were carried out using rotary bending fatigue tester with proving ring and bridge type contact pad. Through these experiments, it is found that the fretting fatigue limit decreased about 37% compared to the plain fatigue limit. In fretting fatigue, the wear debris is observed on the contact surface, and oblique cracks at an earlier stage are initiated in contact area. These results can be used as useful data in a structural integrity evaluation of railway axle.