Slider-Bearing Design with Micro-Machined Wavy-Cavity: Parametric Characterization of Thermohydrodynamic-Operation-Scheme

  • Ozalp B. Turker (Department of Industrial Engineering, Uludag University) ;
  • Ozalp A. Alper (Department of Mechanical Engineering, Uludag University)
  • Published : 2006.10.01

Abstract

Slider bearings are widely applied in mechanical systems, where the design needs cover increased load capacity, lowered friction and power consumption and creative designs. This work is governed to perform a parametric characterization, by generating a novel structure on the upper slider surface, which can formally be expressed in micro-machined wavy-form, where the individual and combined influences of various structural design parameters and boundary conditions, on the performance records, are also evaluated. Computations put forward that the contribution of the wave amplitude on power loss values is highly dependent on the level of inlet pressure; higher amplitudes are determined to increase power loss in the lowest inlet pressure case of 1.01, whereas the contrary outcome is determined in the higher inlet pressure cases of 3.01 & 5.01. Designing the slider bearing system, based on optimal load capacity, produced the optimum wave number ranges as 10-45, 7-11 and 5-8 for the pad inclinations of $5^{\circ},\;4^{\circ}$ and $3^{\circ}$ respectively.

Keywords

References

  1. Ai, X., Cheng, H. S., Hua, D., Moteki, K. and Aoyama, S., 1998, 'A Finite Element Analysis of Dynamically Loaded Journal Bearings in Mixed Lubrication,' Tribology Transactions, Vol. 41, No.2, pp.273-281 https://doi.org/10.1080/10402009808983748
  2. Cameron, A., 1981, Basic Lubrication Theory, Prentice Hall
  3. Chapra, S. C. and Canale, R. P., 1990, Numerical Methods for Engineers, McGraw Hill
  4. Cho, I. S., Oh, S. H. and Jung J. Y., 2001, 'Lubrication Characteristics Between the Vane and the Rolling Piston in a Rotary Compressor Used for Refrigeration and Air-Conditioning Systems,' KSME International Journal, Vol. 15, No. 5, pp. 562-568
  5. Czolczynski, K., 1997, 'Stability of the Rotor Supported in Gas Journal Bearings with a Chamber Feeding System,' Wear, Vol. 210, No. 1-2, pp.220-236 https://doi.org/10.1016/S0043-1648(97)00068-9
  6. Dadouche, A., Fillon, M. and Bligoud, J. c., 2000, 'Experiments on Thermal Effects in a Hydrodynamic Thrust Bearing,' Tribology International, Vol. 33, No. 3-4, pp. 167-174 https://doi.org/10.1016/S0301-679X(00)00023-2
  7. Das, N. C., 1998, 'A Study of Optimum Loadbearing Capacity for Slider Bearings Lubricated with Couple Stress Fluids in Magnetic Field,' Tribology International, Vol. 31, No.7, pp. 393-400 https://doi.org/10.1016/S0301-679X(98)00050-4
  8. Hargreaves, D. J. and Elgezawy, A. S., 1998, 'A New Model for Combined Couette and Poiseuille Flows in the Transverse Groove of a Plane Inclined Slider Bearing,' Tribology International, Vol. 31, No.6, pp. 297-303 https://doi.org/10.1016/S0301-679X(98)00037-1
  9. Harsha, S. P., Sandeep, K. and Prakash, R., 2003, 'The Effect of Speed of Balanced Rotor on Nonlinear Vibrations Associated with Ball Bearings,' International Journal of Mechanical Sciences, Vol. 45, No.4, pp. 725-740 https://doi.org/10.1016/S0020-7403(03)00064-X
  10. Honchi, M., Kohira, H. and Matsumoto, M., 2003, 'Numerical Simulation of Slider Dynamics During Slider-disk Contact,' Tribology International, Vol. 36, No. 4-6, pp. 235-240 https://doi.org/10.1016/S0301-679X(02)00192-5
  11. Hwang, C. C., Lin, J. R. and Yang, R. F., 1996, 'Lubrication of Long Porous Slider Bearings (Use of the Brinkman-extended Darcy Model),' JSME International Journal (Series B), Vol. 39, No.1, pp. 141-148 https://doi.org/10.1299/jsmeb.39.141
  12. Jeong, H. S. and Kim, H. E., 2004, 'On the Instantaneous and Average Piston Friction of Swash Plate Type Hydraulic Axial Piston Machines,' KSME International Journal, Vol. 18, No. 10, pp. 1700-1711
  13. Jun, S. C.. 2005, 'Lubrication Effect of Liquid Nitrogen in Cryogenic Machining Friction on the Tool-chip Interface,' Journal of Mechanical Science and Technology, Vol. 19, No.4, pp.936-946 https://doi.org/10.1007/BF02919176
  14. Karkoub, M. and Elkamel, A., 1997, 'Modelling Pressure Distribution in a Rectangular Gas Bearing Using Neural Networks,' Tribology International, Vol. 30, No.2, pp. 139-150 https://doi.org/10.1016/0301-679X(96)00038-2
  15. Kim, J. K., Kim, H. E., Lee, Y. B., Jung, J. Y. and Oh, S. H., 2005, 'Measurement of Fluid Film Thickness on the Valve Plate in Oil Hydraulic Axial Piston Pumps (Part II: Spherical Design Effects),' Journal of Mechanical Science and Technology, Vol. 19, No.2, pp. 655-663 https://doi.org/10.1007/BF02916187
  16. Kumar, B. V. R, Rao, P. S. and Sinha, P., 2001, 'A Numerical Study of Performance of a Slider Bearing with Heat Conduction To the Pad,' Finite Elements in Analysis and Design, Vol. 37, No. 6-7, pp. 533-547 https://doi.org/10.1016/S0168-874X(00)00062-7
  17. Kwan, Y. B. P. and Post, J. B., 2000, 'A Tolerancing Procedure for Inherently Compensated, Rectangular Aerostatic Thrust Bearings,' Tribology International, Vol. 33, No.8, pp. 581-585 https://doi.org/10.1016/S0301-679X(00)00109-2
  18. Lin, J. R., 2001, 'Optimal Design of One-dimensional Porous Slider Bearings Using the Brinkman Model,' Tribology International, Vol. 34, No. 1, pp. 57-64 https://doi.org/10.1016/S0301-679X(00)00138-9
  19. Liu, W. K., Xiong, S., Guo, Y., Wang, Q. J., Wang, Y., Yang, Q. and Vaidyanathan, K., 2004, 'Finite Element Method for Mixed Elastohydrodynamic Lubrication of Journal-Bearing Systems,' International Journal for Numerical Methods in Engineering, Vol. 60, No. 10, pp. 1759-1790 https://doi.org/10.1002/nme.1022
  20. Luong, T. S., Potze, W., Post, J. B., Van Ostayen, R. A. J. and Van Beek, A., 2004, 'Numerical and Experimental Analysis of Aerostatic Thrust Bearings with Porous Restrictors,' Tribology International, Vol. 37, No. 10, pp. 825-832 https://doi.org/10.1016/j.triboint.2004.05.004
  21. Mehenny, D. S. and Taylor, C. M., 2000, 'Influence of Circumferential Waviness on Engine Bearing Performance,' Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, Vol. 214, No. 1, pp.51-61 https://doi.org/10.1243/0954406001522804
  22. Na, U. J., 2005, 'Fault Tolerant Control of Magnetic Bearings with Force Invariance,' Journal of Mechanical Science and Technology, Vol. 19, No.3, pp. 731-742 https://doi.org/10.1007/BF02916122
  23. Naduvinamani, N.B., Fathima, S.T. and Hiremath, P. S., 2003, 'Effect of Surface Roughness on Characteristics of Couple Stress Squeeze Film Between Anisotropic Porous Rectangular Plates,' Fluid Dynamics Research, Vol. 32, No.5, pp. 217-231 https://doi.org/10.1016/S0169-5983(03)00048-0
  24. Nouri, J. M., Umur, H. and Whitelaw, J. H., 1993, 'Flow of Newtonian and Non-Newtonian Fluids in Concentric and Eccentric Annuli,' Journal of Fluid Mechanics, Vol. 253, pp. 617-641 https://doi.org/10.1017/S0022112093001922
  25. Ozalp, A. A. and Ozel, S. A., 2003, 'An Interactive Software Package for the Investigation of Hydrodynamic-Slider Bearing-Lubrication,' Computer Applications in Engineering Education, Vol. 11, No.3, pp. 103-115 https://doi.org/10.1002/cae.10047
  26. Pandey, R. K. and Ghosh, M. K., 1998, 'A Thermal Analysis of Traction in Elastohydrodynamic Rolling/Sliding Line Contacts,' Wear, Vol. 216, No.2, pp. 106-114 https://doi.org/10.1016/S0043-1648(98)00151-3
  27. Rasheed, H. E., 1998, 'Effect of Surface Waviness on the Hydrodynamic Lubrication of a Plain Cylindrical Sliding Element Bearing,' Wear, Vol. 223, No. 1-2, pp. 1-6 https://doi.org/10.1016/S0043-1648(98)00263-4
  28. Shigley, J. E., 1986, Mechanical Engineering Design, McGraw-Hill
  29. Sottomayor, A., Campos, A. and Seabra, J., 1997, 'Traction Coefficient in a Roller-Inner Ring EHD Contact in a Jet Engine Roller Bearing,' Wear, Vol. 209, No. 1-2, pp.274-283 https://doi.org/10.1016/S0043-1648(97)00013-6
  30. Stokes, M. R. and Symmons, G. R., 1996, 'Numerical Optimisation of the Plasto-hydrodynamic Drawing of Narrow Strips,' Journal of Materials Processing Technology, Vol. 56, No. 1-4, pp.733-742 https://doi.org/10.1016/0924-0136(96)85118-1
  31. Storteig, E. and White, M. F., 1999, 'Dynamic Characteristics of Hydrodynamically Lubricated Fixed-Pad Thrust Bearings,' Wear, Vol. 232, No. 2,pp. 250-255 https://doi.org/10.1016/S0043-1648(99)00153-2
  32. Su, J. C. T. and Lie, K. N., 2001, 'Rotation Effects on Hybrid Hydrostatic/hydrodynamic Journal Bearings,' Industrial Lubrication and Tribology, Vol. 53, No.6, pp. 261-269 https://doi.org/10.1108/EUM0000000006009
  33. van Ostayen, R. A. J., Van Beek, A. and Ros, M., 2004, 'A Parametric Study of the Hydrosupport,' Tribology International, Vol. 37, No.8, pp.617-625 https://doi.org/10.1016/j.triboint.2004.01.009
  34. Wang, X. L., and Zhu K. Q., 'Numerical Analysis of Journal Bearings Lubricated with Micro-polar Fluids Including Thermal and Cavitating Effects,' Tribology International, (in Print)
  35. Watanabe, K., Natsume, J., Hashizume, K., Ozasa, T, Noda, T. and Masuda, Y., 2000, 'Theoretical Analysis of Bearing Performance of Microgrooved Bearing,' JSAE Review, Vol. 21, No.1, pp.29-33 https://doi.org/10.1016/S0389-4304(99)00073-9
  36. Wong, P. L., Xu, H. and Zhang, Z., 1997, 'Performance Evaluation of High Pressure Sleeve-Seal,' Wear, Vol. 210, No. 1-2, pp. 104-111 https://doi.org/10.1016/S0043-1648(97)00050-1
  37. Yoo, J. G. and Kim, K. W., 1997, 'Numerical Analysis of Grease Thermal Elastohydrodynamic Lubrication Problems Using the HerschelBulkley Model,' Tribology International, Vol. 30, No.6, pp. 401-408 https://doi.org/10.1016/S0301-679X(96)00069-2
  38. Yoon, S. J., Kim, M. S. and Choi, D. H., 2002, 'Topological Design Sensitivity on the Air Bearing Surface of Head Slider,' KSME International Journal, Vol. 16, No.8, pp. 1102-1108