• Title/Summary/Keyword: friction brake

Search Result 340, Processing Time 0.026 seconds

Thermal Stress Analysis for a Ventilated Disk Brake of Railway Vehicles (철도 차량용 제동디스크의 열응력 해석)

  • Lee Y.M.;Park J.S.;Seok C.S.;Lee C.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1617-1621
    • /
    • 2005
  • In this study, as a basic research to improve braking efficiency of a ventilated disk brake, we carried out a thermal stress analysis. From analysis result, we knew that a maximum mechanical stress by braking pressure and friction force is applicable to 5 percent of yield strength and has no effect on a fatigue life's decrease for brake disk material. While, a maximum thermal stress by frictonal heat is applicable to 43 percent of yield strength and locates on a friction surface. So, we have found that a thermal stress is the primary factor of crack initiation on a friction surface of disk brake

  • PDF

Thermomechanical Properties of Carbon Fibres and Graphite Powder Reinforced Asbestos Free Brake Pad Composite Material

  • Thiyagarajan, P.;Mathur, R.B.;Dhami, T.L.
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.117-120
    • /
    • 2003
  • Asbestos is being replaced throughout the world among friction materials because of its carcinogenic nature. This has raised an important issue of heat dissipation in the non-asbestos brake pad materials being developed for automobiles etc. It has been found that two of the components i.e. carbon fibres as reinforcement and graphite powder as friction modifier, in the brake pad material, can playa vital role in this direction. The study reports the influence of these modifications on the thermal properties like coefficient of thermal expansion (CTE) and thermal conductivity along with the mechanical properties of nonasbestos brake pad composite samples developed in the laboratory.

  • PDF

Dynamic Stability of a Drum-Brake Pad Considering Rotary Inertia and Shear Deformation (회전광성과 전단변형을 고려한 드럼-브레이크 패드의 동적안정성)

  • 오부진;공용식;류봉조;이규섭;임경빈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.181-185
    • /
    • 2001
  • This paper deals with the dynamic stability of a disc brake pad taking into account of its shear deformation and rotary inertia. A brake pad can be modeled as a beam like model subjected to distributed friction forces and having two translational springs. The study of this model is intended to provide a fundamental understanding of dynamic stability of drum brake pad. Governing equations of motion are derived from extended Hamilton's principle and their corresponding numerical solutions are obtained by applying the finite element formulation. The critical distributed friction force and the instability types are investigated bt changing two translational spring constants, rotary inertia parameter and shear deformation parameter. Also, the changes of eigen-frequencies of a beam determining instability types are investigated for various combinations of two translational spring constants.

  • PDF

Manufacturing Parameters Affecting Physical Properties and Tribological Behavior of Brake Linings (마찰재의 물성 및 트라이볼로지 특성에 영향을 미치는 주요 성형인자)

  • Kim, Seong-Jin;Kim, Kwang-Seok;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.127-132
    • /
    • 2002
  • The Taguchi method, a robust experimental design, was used to optimize manufacturing parameters of a brake lining during hot pressing and heat treatment. A friction material containing 15 ingredients was employed fur this experiment and friction and wear tests were carried out by using a pad-on-disk type tribotester. Sixteen brake linings with different manufacturing conditions were examined according to a parameter design. From the results of the signal-to-noise (S/N) ratio and the analysis of variance (ANOVA), the cause and effect of the manufacturing parameters on physical properties (hardness and porosity) and friction and wear characteristics of brake linings was obtained.

Influence of Inertial Mass on Tribological Characteristics between Sintered Friction Material and Disk (관성에 따른 소결마찰재와 제동디스크간 마찰특성 연구)

  • Lee, Jong Seong;Kang, Bu Byoung;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.98-104
    • /
    • 2013
  • Cu-matrix-sintered brake pads and heat-resistant low-alloy steel are commonly applied to basic brake systems in high-energy moving machines. We analyzed how the tribological characteristics are influenced by the inertial mass. A high inertial mass decreased the friction coefficient by about 15% compared to a low inertial mass under all velocity conditions. The wear rates of the friction materials increased with the inertial mass. Thus, the inertial mass influences the friction coefficient and wear rate of the friction materials and disk but not the friction stability.

Friction-Induced Vibration of Brake Lining Pad (브레이크 라이닝 패드의 마찰 진동)

  • Choi, Y.S.;Jung, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.93-100
    • /
    • 1994
  • Friction-induced vibration characteristics of automotive brake lining pad are investigated on the basis of experimental observations from a pin-on-disk type friction-induced vibration experimental apparatus. The measured responses of the experimental apparatus show limit cycles of quasi-harmonics type and beat phenomena due to the velocity dependence of friction force. To deduce the friction coefficient vs. relative velocity Lienard method is adopted with least square fit. It shows Scurve which characterizes a quasi-harmonic vibration. The calculation of amplitudes and friquencies of the limit cycles is done using slowly changing phase and amplitude method. The theoretical and numerical results show fairly good agreements with those of experiments.

  • PDF

A Study on the Friction Characteristics of Automotive Composites Brake Pads Using Taguchi Method (다구치 방법을 이용한 복합재료 자동차용 마찰재의 마찰특성에 관한 연구)

  • 이정주;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.141-146
    • /
    • 2000
  • It has many variables and factors to design the friction materials for automotive brake pads. In this study, the friction and wear characteristics of automotive blake pads have been studied using 1:l full size dynamo meter. Using conventional manners, it takes a great of time and efforts to know that it affects the each raw materials for friction characteristics. For the purpose of examining the effect of each major raw materials, we used the more convenient Taguchi L9 ($3^4$) orthogonal matrix and 1/5 scale dynamo machine for evaluation of the friction characteristics of composite brake pads.

  • PDF

Study on the Effect of Parameters on the Temperature Distribution of Brake Discs (제동 디스크의 온도분포에 미치는 파라미터의 영향에 관한 연구)

  • Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.761-766
    • /
    • 2007
  • A brake disc is one of the key elements of friction brake system. Thermal cracks of discs may shorten the lifetime of a disc and increase maintenance cost. Therefore, prevention of thermal cracks is very important to ensure the safety of the vehicle operation and reduction of maintenance cost. In this study, the influence of parameters on the friction heat of brake disc is examined.

  • PDF

Effects of Composition of Metallic Friction Materials on Tribological Characteristics on Sintered Metallic Brake Pads and Low-Alloy Heat-Resistance Steel for Trains (철도차량용 금속계 소결마찰재의 조성에 따른 트라이볼로지 특성)

  • Yang, Yong Joon;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.330-336
    • /
    • 2014
  • Sintered metallic brake pads and low alloy heat resistance steel disks are applied to mechanical brake systems in high energy moving machines that are associated with recently developed 200km/h trains. This has led to the speed-up of conventional urban rapid transit. In this study, we use a lab-scale dynamometer to investigate the effects of the composition of friction materials on the tribological characteristics of sintered metallic brake pads and low alloy heat resistance steel under dry sliding conditions. We conduct test under a continuous pressure of 5.5 MPa at various speeds. To determine the optimal composition of friction materials for 200 km/h train, we test and the evaluate frictional characteristics such as friction coefficients, friction stability, wear rate, and the temperature of friction material, which depend on the relative composition of the Cu-Sn and Fe components. The results clearly demonstrate that the average friction coefficient is lower for all speed conditions, when a large quantity of iron power is added. The specimen of 25 wt% iron powder that was added decreased the wear of the friction materials and the roughness of the disc surface. However when 35 wt% iron powder was added, the disc roughness and the wear rate of friction materials increased By increasing the amount of iron powder, the surface roughness, and temperature of the friction materials increased, so the average friction coefficients decreased. An oxidation layer of $Fe_2O_3$ was formed on both friction surfaces.