• Title/Summary/Keyword: freshwater microalgae

Search Result 40, Processing Time 0.028 seconds

Effects of Nitrogen and Phosphorus Starvation on Growth and Fatty Acid Production in Newly Isolated Two Freshwater Green Microalgae from Nakdonggang River (낙동강 수계에서 분리한 녹조류 2종의 질소와 인의 결핍에 따른 생장 및 지방산 변화 연구)

  • Yim, Kyung June;Park, Hanwool;Lee, Chang Soo;Jo, Bok Yeon;Nam, Seung Won;Lee, Choul-Gyun;Kim, Z-Hun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.81-88
    • /
    • 2019
  • In this study, effects of nitrogen (N) and phosphorus (P) starvation on the cell growth and fatty acid (FA) production of newly isolated freshwater microalgae were investigated. The microalgae were identified as Chlorella sp. and Parachlorella sp. through 18S rRNA sequencing. Optimal culture temperature and light intensity were investigated using a high-throughput photobioreator, and the result was validated in 0.5 L bubble column photobioreactors using BG-11 without NaNO3 and/or K2HPO4. Under nutrient starvation conditions, total FA contents of the microalgae were significantly changed rather than FA composition. Starvation of both N and P was most effective for increasing FA contents in Parachlorella sp (24.4±0.1%) whereas highest FA contents (42.6±1.8%) was achieved when only P was starved in Chlorella sp. among tested conditions. These results suggest an effective strategy for increasing FA production from microalgae using appropriate nutrient starvation.

Distribution Changes of Freshwater Microalgae Community in the Nakdonggang River, Korea (낙동강 담수 미세조류 군집 분포 변화)

  • Suk Min Yun;Dae Ryul Kwon;Mirye Park;Chang Soo Lee;Sang Deuk Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.2
    • /
    • pp.181-193
    • /
    • 2023
  • Distribution changes in microalgae communities were studied in the Nakdonggang River at two sampling stations (St.1 Gyeongcheongyo Bridge (GB) and St.2 Daedong Wharf (DW)) at monthly intervals from January 2021 to November 2021. A total of 83 taxa included 82 species, 1 forma, belonging to 49 genera, 32 families, 21 orders, and 8 classes. The most important groups were Bacillariophyta and Chlorophyta. The number of species ranged from 5 to 24 in GB, and from 9 to 21 taxa in DW. The contribution of Bacillariophyta to the total species richness was the highest during all survey periods, and Chlorophyta yielded the next highest value in the study area. The dominant taxa were Aulacoseira ambigua, A. ambigua f. japonica, and Ulnaria acus in this study. Cluster analysis and non-metric multidimensional scaling (nMDS) analysis based on Bray- Curtis similarity identified 4 major groups, which corresponded to microalgae assemblages and their characteristic species. Correlation was analyzed through the CCA analysis. It was found that there was a correlation between the microalgae and environmental factors. It was revealed that the divided groups were distinguished because of the differences by the survey period. Therefore, seasonal change was judged as a major factor affecting the distribution of microalgae communities.

A Comparative Study on Microalgae Recovery Rates in Response to Different Low Cost Bio-flocculant Applications (저비용 응집제를 이용한 미세조류 응집 효율 비교)

  • Choi, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.625-631
    • /
    • 2015
  • In this study, low cost bio-flocculants, chitosan, cationic starch and Mg-sericite, were used as a flocculant to harvest freshwater microalgae, Chlorella vulgaris. Chitosan, cationic starch and Mg-sericite separated successfully >98% of C. vulgaris at following optimal parameters: 90 mg/L chitosan at pH 6-7, 70 mg/L cationic starch at pH 9-10 and 50 mg/L Mg-sericite at pH 4-5. A relatively high correlation coefficient (R2) of 0.9993 for chitosan, 0.9971 for catonic starch and 0.9924 for Mg-sericite was obtained. The investigated flocculants amount increased linearly with increasing the microalgae amount. The biopolymer, Mg-sericite, was more effective than that of other investigated flocculants. These results indicated that a bio-flocculants, chitosan, cationic starch and Mg-sericite, could prove to be an effective flocculant for economical production of microalgae biomass. In addition, Mg-sericite was more effective comparing to the other investigated flocculants.

Cellular growth and fatty acid content of Arctic chlamydomonadalean

  • Jung, Woongsic;Kim, Eun Jae;Lim, Suyoun;Sim, Hyunji;Han, Se Jong;Kim, Sanghee;Kang, Sung-Ho;Choi, Han-Gu
    • ALGAE
    • /
    • v.31 no.1
    • /
    • pp.61-72
    • /
    • 2016
  • Arctic microalgae thrive and support primary production in extremely cold environment. Three Arctic green microalgal strains collected from freshwater near Dasan Station in Ny-Alesund, Svalbard, Arctic, were analyzed to evaluate the optimal growth conditions and contents of fatty acids. The optimal growth temperature for KNF0022, KNF0024, and KNF0032 was between 4 and 8℃. Among the three microalgal strains, KNF0032 showed the maximal cell number of 1.6 × 107 cells mL-1 at 4℃. The contents of fatty acids in microalgae biomass of KNF0022, KNF0024, and KNF0032 cultured for 75 days were 37.34, 73.25, and 144.35 mg g-1 dry cell weight, respectively. The common fatty acid methyl esters (FAMEs) analyzed from Arctic green microalgae consisted of palmitic acid methyl ester (C16:0), 5,8,11-heptadecatrienoic acid methyl ester (C17:3), oleic acid methyl ester (C18:1), linoleic acid methyl ester (C18:2), and α-linolenic acid methyl ester (C18:3). KNF0022 had high levels of heptadecanoic acid methyl ester (26.58%) and heptadecatrienoic acid methyl ester (22.17% of the total FAMEs). In KNF0024 and KNF0032, more than 72.09% of the total FAMEs consisted of mono- and polyunsaturated fatty acids. Oleic acid methyl ester from KNF0032 was detected at a high level of 20.13% of the FAMEs. Arctic freshwater microalgae are able to increase the levels of polyunsaturated fatty acids under a wide range of growth temperatures and can also be used to produce valuable industrial materials.

Optimization for Microalgae Harvesting Using Mg-Sericite Flocculant (Mg-Sericite 응집제를 이용하여 미세조류 회수 최적화 연구)

  • Choi, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.328-333
    • /
    • 2015
  • In this study, Mg-Sericite was used as a flocculant to harvest freshwater microalgae, Chlorella. vulgaris. Mg-Sericite separated successfully >95% of the C. vulgaris at the following optimal parameters: Mg/Si mol ratio 1.25 to 1.50, mixing time of 20 min and settling time of 20 min. The harvesting efficiency was pH dependent. The highest harvesting efficiency ($99{\pm}0.3%$) was obtained at Mg/Si mol ratio 1.5 and pH 9 to 11. These results indicated that a biopolymer, Mg-Sericite, can be a promising flocculant due to its high efficiency, low dose requirements, short mixing and settling times. This harvesting method is helpful to lower the production cost of algae for biodiesel.

Trends and Prospects of Microalgae used for Food (식품에 이용되는 미세조류와 이를 이용한 식품 연구개발 동향 및 전망)

  • Kwak, Ho Seok;Kim, Ji Soo;Lee, Ja Hyun;Sung, Dong Eun
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.1
    • /
    • pp.66-75
    • /
    • 2021
  • Microalgae are unicellular microorganisms inhabiting various ecosystems of the world, including marine and freshwater systems and extreme environments. Only a few species have been actively used as food. Microalgae are attracting attention as a means of biological CO2 reduction because they play an important role in absorbing atmospheric CO2 through their rapid growth by photosynthesis in water. Besides, microalgae are considered to be an eco-friendly energy source because they can rapidly produce biomass containing a large quantum of lipids that can be converted into biodiesel. Several microalgae, such as Chlorella spp., Spirulina spp. and Haematococcus spp. have already been commercialized as functional health supplements because they contain diverse nutrients including proteins, vitamins, minerals, and functional substances such as docosahexaenoic acid (DHA), β-glucan, phycocyanin, astaxanthin, etc. Moreover, they have the potential to be used as food materials that can address the protein-energy malnutrition (PEM) which may occur in the future due to population growth. They can be added to various foods in the form of powder or liquid extract for enhancing the quality characteristics of the foods. In this review, we analyzed several microalgae which can be used as food additives and summarized their characteristics and functions that suggest the possibility of a role for microalgae as future food.

Prediction of Water Quality and Water Treatment in Saemankeum Lake 3. Effects of Environmental Pollutants on Propagation of Freshwater Microalgae, Cryptomonas ovata and Feeding Rate of Corbicula leana (새만금호의 수질예측과 그에 따른 대책 3. 환경오염이 담수산 미세조류, Cryptomonas ovata의 증식과 참재첩(Corbicula leana) 섭이율에 미치는 영향)

  • 최문술;정의영;신윤경
    • The Korean Journal of Malacology
    • /
    • v.14 no.2
    • /
    • pp.167-172
    • /
    • 1998
  • As a preliminary study, effects of environmetal pollutants on propagation of freshwater microalgae, Cryptomonas ovata and feeding rate of Corbicula leana were investigated at 20${\pm}$1$^{\circ}C$, over 20 days after treatment of pollutants, glucose, complex fertilizer and NH4Cl. Number of C. ovata in control group was increased from 38${\times}$104 cell/ml to 1.910${\times}$104 cell/ml after 20 days cultivation in Sorokin-Krauss medium. Increments of cell number in experimental groups treated with glucose, complex fertilizer and NH4Cl were higher than that of control group. The higher propagation rate of C.ovata was observed when 30 mg/l of glucose treated, 120 mg/l of complex fertilizer treated, and 4 mg/l of NH4Cl treated, compared with other concentrations in each pollutant treated group. The feeding rates of large size group of C. leana which fed with a living organism, C. ovata in each experimental group were higher than small size group, and slightly reduced with the increase of pollutant concentrations. The feeding rates were not significantly different between any concentrations of the pollutant, and among experimental groups treated with glucose, complex fertilizer and NH4Cl.

  • PDF

Biodiversity of Microalgae and Their Elemental Components from Veeranam Lake, Tamilnadu, India

  • Sivakumar, K.;Senthilkumar, R.
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.128-136
    • /
    • 2008
  • An attempt was made in the Veeranam freshwater lake with the objectives to collect, identify, describe and document the algae occurring from March 2007 to August 2007. Qualitative and quantitative characterization of phytoplankton and analysis of physico-chemical parameters of water samples were carried out at monthly intervals during the study period in the western and eastern sides of the lake. It was found that the phytoplankton community embraced 68 genera belonging to four classes viz., Bacillariophyceae (40), Chlorophyceae (22), Cynophyceae (4) and Euglenophyceae (2). There were significant influences of various physico-chemical parameters on the phytoplankton population density. Commonly occurred genera, Oscillatoria (Cyanophyceae), Navicula (Bacillariophyceae) and Scenedesmus (Chlorophyceae), were subjected to energy dispersive spectroscopic analysis (EDS). They were found to accumulate different elements such as Zn, P, S, Ca, Mg, Fe, N, Si, Cl and Mn. Among these the member Cyanophyceae contained Zn, P, Mg, Ca, Mn, S and N. Bacillariophyceae Si, Zn, Mg, Cl, N, Fe, and Ca. Chlorophyceae Ca, Mg, N, Fe, Cl, Zn, Si and Mn. Thus these observations would determine the chemical dialogue between the cell structures and role of the elements. Further, it gives the clue about the phytoplankton growth requirements.

Feasibility Study on Electro Coagulation Flocculation for Microalgae Harvesting (수처리용 미세조류의 수확을 위한 전기응집기술의 적용)

  • Lee, Seok Min;Cho, Jae Hyung;Noh, Kyung Ho;Zhang, Shan;Hwang, Hyeon-Jeong;Nam, guisook;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.6
    • /
    • pp.643-649
    • /
    • 2015
  • Although microalgae are considered as a promising feedstock for biofuels, cost-efficient harvesting of microalgae needs to be significantly improved. In this study, the use of electro coagulation as a more rapid flocculation method for harvesting a freshwater (Scenedesmus dimorphus) microalgae species was evaluated. The results showed that, electro coagulation was shown to be more efficient using an aluminum anode than using an iron anode. And optimum conditions of electro coagulation for harvesting Scenedesmus dimorphus were found. The optimum stirring speed was 100 rpm and optimum pH was 5. Furthermore, the current density which the fastest and highest recovery efficiency is achieved at $30A/m^2$, while the highest energy efficiency was achieved at $10A/m^2$. A the rapid and high recovery efficiency indicate that electro coagulation is a particularly attractive technology for harvesting microalgae.