Browse > Article
http://dx.doi.org/10.15681/KSWE.2015.31.3.328

Optimization for Microalgae Harvesting Using Mg-Sericite Flocculant  

Choi, Hee-Jeong (Department of Environmental Engineering, Catholic Kwandong University)
Publication Information
Abstract
In this study, Mg-Sericite was used as a flocculant to harvest freshwater microalgae, Chlorella. vulgaris. Mg-Sericite separated successfully >95% of the C. vulgaris at the following optimal parameters: Mg/Si mol ratio 1.25 to 1.50, mixing time of 20 min and settling time of 20 min. The harvesting efficiency was pH dependent. The highest harvesting efficiency ($99{\pm}0.3%$) was obtained at Mg/Si mol ratio 1.5 and pH 9 to 11. These results indicated that a biopolymer, Mg-Sericite, can be a promising flocculant due to its high efficiency, low dose requirements, short mixing and settling times. This harvesting method is helpful to lower the production cost of algae for biodiesel.
Keywords
Biomass; Clay; Flocculation; Harvesting; Microalgae; Mg-Sericite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 American Public Health Association(APHA). (2012). Standard Methods for the Examination of Water and Wastewater, 22th ed, American Public Health Association, Washington, D.C.
2 Barros, A. I., Goncalves, A. L., Simoes, M., and Pires, J. C. M. (2015). Harvesting Techniques Applied to Microalgae: A Review, Renewable and Sustainable Energy Reviews, 41, pp. 1489-1500.   DOI
3 Becker, W. (2004). Microalgae in Human and Animal Nutrition, In: Richmond A, editor. Handbook of Microalgae Culture, Oxford: Blackwell Publishing Ltd., pp. 312-351.
4 Cerff, M., Morweiser, M., Dillschneider, R., Michel, A., Menzel, K., and Posten, C. (2012). Harvesting Fresh Water and Marine Algae by Magnetic Separation: Screening of Separation Parameters and High Gradient Magnetic Filtration, Bioresource Technology, 118, pp. 289-295.   DOI
5 Chisti, Y. (2007). Biodiesel from Microalgae, Biotechnology Advances, 25(3), pp. 294-306.   DOI
6 Choi, H. J. and Yu, S. W. (2015). Influence of crude glycerol on the biomass and lipid content of microalgae, Biotechnology & Biotechnological Equipment, DOI: 10.1080/13102818.2015.1013988.   DOI
7 Danquah, M. K., Ang, L., Uduman, N., Moheimani, N., and Forde, G. M. (2009). Dewatering of Microalgae Culture for Biodiesel Production: Exploring Polymer Flocculation and Tangential Flow Filtration, Journal of Chemical Technology and Biotechnology, 84, pp. 1078-1083.   DOI
8 Dassey, A. J. and Theegala, C. S. (2013). Harvesting Economics and Strategies using Centrifugation for Cost Effective Separation of Microalgae Cells for Biodiesel Application, Bioresources Technology, 128, pp. 214-215.
9 Farooq, W., Lee, Y. C., Han, J. I., Darpito, C. H., Choi, M., and Yang, J. W. (2013). Efficient Microalgae Harvesting by Organo-Building Blocks of Nanoclays, Green Chemistry, 15, pp. 749-755.   DOI
10 Gerde, J. A., Yao, L., Wen, Z., and Wang, T. (2014). Microalgae Flocculation: Impact of Flocculant Type, Algae Species and Cell Concentration, Algal Research, 3, pp. 30-35.   DOI
11 Habib, M. A. B. and Parvin, M. (2008). A Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish. In: Huntington, T. C. and Hasan, M .R., editors. FAO fisheries and aquaculture circular No. 1034, Rome: Food and Agriculture Organization of the United Nations.
12 Intional Energy Agency (IEA). (2014). World Energy Outlook 2014, ISBN 978-92-64-20804-9, London
13 Kong, W. B., Yang, H., Cao, Y. T., Song, H., Hua, S. F., and Xia, C. G. (2013). Effects of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris, Food Technology and Biotechnology, 51, pp. 62-69.
14 Liu, D., Wang, P., Wei, G., Dong, W., and Hui, F. (2013). Removal of Algal Blooms from Freshwater by the Coagulation-Magnetic Separation Method, Environmental Science and Pollution Research International, 20, pp. 60-65.   DOI
15 Lee, A., Lewis, D., and Ashman, P. (2009). Microbial Flocculation, a Potentially Low-Cost Harvesting Technique for Marine Microalgae for Production of Biodiesel, Journal of Applied Phycology, 21, pp. 559-567.   DOI
16 Lee, Y. C., Kim, B., Farooq, W., Chung, J., Han, J. I., Shin, H. J., Jeong, S. H., Park, J. Y., Lee, J. S., and Oh, Y. K. (2013) Harvesting of Oleaginous Chlorella sp. by Organoclays. Bioresource Technology, 132, pp. 440-445.   DOI
17 Letelier Gordo, C. O., Holdt, S. L., De Francisci, D., Karakashev, D. B. and Angelidaki, I. (2014). Effective Harvesting of the Microalgae Chlorella protothecoides via Bioflocculation with Cationic Starch, Bioresource Technology, 167, pp. 214-218.   DOI
18 Molina Crima, E., Belarbi, E. H., Acién Fernández, F. G., Robles Medina, A., and Chisti, Y. (2003). Recovery of Microalgae Biomass and Metabolites: Process Optionss and Economics, Biotechnology Advantage, 20, pp. 491-515.   DOI
19 Moreno-Garrido, I. (2008). Microalgae Immobilization: Current Techniques and Uses, Bioresource Technology, 99(10), pp. 3949-3964.   DOI
20 Oncel, S. S. (2013). Microalgae for a Macroenergy World, Renewable and Sustainable Energy Reviews, 26, pp. 241-264.   DOI
21 Papazi, A., Makridis, P., and Divanach, P. (2010). Harvesting Chlorella minutissima using Cell Coagulants, Journal of Applied Phycology, 22, 349-355.   DOI
22 Reddy, D. H. K., Lee, S. M., and Kim, J. O. (2013) A Review on Emerging Applications of Natural Sericite and Its Composites, World Applied Science Journal, 27(11), pp. 1514-1523.
23 Smith, B. T. and Davis, R. H. (2012). Sedimentation of Algae Flocculated Using Naturally-Available, Magnesium-Based Flocculants, Algal Research, 1, pp. 32-39.   DOI
24 Salim, S., Bosma, R., Vermue, M. H., and Wijffels, R. H. (2011). Harvesting of Microalgae by Bioflocculation, Journal of Applied Phycology, 23, pp. 849-855.   DOI
25 Semerjian, L. and Ayoub, G. M. (2003). High-pH-Magnesium Coagulation-Flocculation in Wastewater Treatment, Advances in Environmental Research, 7(2), pp. 389-403.   DOI   ScienceOn
26 Show, K. Y. and Lee, D. J. (2014). Algal Biomass Harvesting, In: pandey A., Lee, D. J., Chisti, Y., and Soccol, C. R., Editors. Biofuels from Algae, Burlington: Elsevier, pp. 85-110.
27 Sirin, S., Trobajo, R., Ibanez, C., and Salvado, J. (2012). Harvesting the Microalgae Phaeodactylum tricornutum with Polyaluminum Chloride, Aluminium sulphate, Chitosan and Alkalinity-Induced Flocculation, Journal of Applied Phycology, 24, pp. 1067-1080.   DOI
28 Vandamme, D., Foubert, I. and Muylaert, K. (2013). Flocculation as a Low-Cost Method for Harvesting Microalgae for Bulk Biomass Production, Trends Biotechnology, 31, pp. 233-239.   DOI
29 Vandamme, D., Foubert, I., Fraeye, I., Meesschaert, B., and Muylaert, K. (2012). Flocculation of Chlorella vulgaris Induces by High pH: Role of Magnesium and Calcium and Practical Implications, Bioresources Technology, 105, pp. 114-119.   DOI
30 Vandamme, D., Foubert, I., Meesschaert, B., and Muylaert, K. (2010). Flocculation of Microalgae Using Cationic Starch, Journal of Applied Phycology, 22, pp. 525-530.   DOI