1 |
Ahmad, A. L., Mat Yasin, N. H., Derek, C. J. C., and Lim, J. K. (2011). Optimization of Microalgae Coagulation Process using Chitosan, Chemical Engineering Journal, 173, pp. 879-882.
DOI
|
2 |
American Public Health Association (APHA). (2012). Standard Methods for the Examination of Water and Waste Water, 22th ed., American Public Health Association Publication, Washington, D.C.
|
3 |
Barros, A. I., Gonçalves, A. L., Simões, M., and Pires, J. C. M. (2015). Harvesting Techniques Applied to Microalgae: A Review, Renewable and Sustainable Energy Reviews, 41, pp. 1489-1500.
DOI
|
4 |
Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., and Chang, J. S. (2011). Cultivation, Photobioreactor Design and Harvesting of Microalgal for Biodiesel Production: A critical Review, Bioresource Technology, 102, pp. 71-81.
DOI
|
5 |
Chisti, Y. (2007). Biodiesel from Microalgae, Biotechnology Advances, 25(3), pp. 294-306.
DOI
|
6 |
Choi, H. J. (2014). Comparison of Biomass and Oil Content of Chlorella sp., Nannochloris sp., and Botryococcus braunii in the Mixotrophic Conditions using Glycerol, Journal of Korean Society on Water Environment, 30(5), pp. 469-476. [Korean Literature]
DOI
|
7 |
Choi, H. J. (2015). Optimization for Microalgae Harvesting using Mg-Sericite Flocculant, Journal of Korean Society on Water Environment, 31(3), pp. 328-333. [Korean Literature]
DOI
|
8 |
Danquah, M. K., Ang, L., Uduman, N., Moheimani, N., and Forde, G. M. (2009). Dewatering of Microalgae Culture for Biodiesel Production: Exploring Polymer Flocculation and Tangential Flow Filtration, Journal of Chemical Technology and Biotechnology, 84, pp. 1078-1083.
DOI
|
9 |
Dassey, A. J. and Theegala, C. S. (2013). Harvesting Economics and Strategies using Centrifugation for Cost Effective Separation of Microalgae Cells for Biodiesel Application, Bioresources Technology, 128, pp. 214-215.
|
10 |
Farooq, W., Lee, Y. C., Han, J. I., Darpito, C. H., Choi, M., and Yang, J. W. (2013). Efficient Microalgae Harvesting by Organo-building Blocks of Nanoclays, Green Chemistry, 15, pp. 749-755.
DOI
|
11 |
Gerde, J. A., Yao, L., Wen, Z., and Wang, T. (2014). Microalgae Flocculation: Impact of Flocculant Type, Algae Species and Cell Concentration, Algal Research, 3, pp. 30-35.
DOI
|
12 |
Gouveia, L. and Oliveira, A. C. (2009). Microalgae as a Raw Material for Biofuels Production, Journal of Industrial Microbiology and Biotechnolgy, 36, pp. 269-274.
DOI
|
13 |
Habib, M. A. B. and Parvin, M. (2008). A Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish, In: Huntington, T. C. and Hasan, M. R., editors, FAO fisheries and aquaculture circular No. 1034, Rome: Food and Agriculture Organization of the United Nations.
|
14 |
Hansel, P. A., Riefler, R. G., and Stuart, B. (2014). Efficient Flocculant of Microalgae for Biodiesel Production using Cationic Starch, Algal Research, 5, pp. 133-139.
DOI
|
15 |
Lee, A., Lewis, D., and Ashman, P. (2009). Microbial Flocculation, a Potentially Low-cost Harvesting Technique for Marine Microalgae for Production of Biodiesel, Journal of Applied Phycology, 21, pp. 559-567.
DOI
|
16 |
Huang, G. H., Chen, F., Wei, D., Zhang, X. W., and Chen, G. (2010). Biodiesel Production by Microalgal Biotechnology, Applied Energy, 87, pp. 38-46.
DOI
|
17 |
Intional Energy Agency (IEA). (2014). World Energy Outlook 2014, IEA, London.
|
18 |
Lee, W. J., Han, B. K., Park, I. H., Park, S. H., Oh, H. I., and Jo, D. H. (1995). Effects of Reaction Temperature, Time and Particle Size on the Physicochemical Properties of Chitosans, Korean Journal of Food Science and Technology, 27(6), pp. 997-1002. [Korean Literature]
|
19 |
Lee, Y. C., Kim, B., Farooq, W., Chung, J., Han, J. I., Shin, H. J., Jeong, S. H., Park, J. Y., Lee, J. S., and Oh, Y. K. (2013) Harvesting of oleaginous Chlorella sp. by organoclays, Bioresource Technology, 132, pp. 440-445.
DOI
|
20 |
Liu, D., Wang, P., Wei, G., Dong, W., and Hui, F. (2013). Removal of Algal Blooms from Freshwater by the Coagulation- Magnetic Separation Method, Environmental Science and Pollution Research International, 20, pp. 60-65.
DOI
|
21 |
Letelier-Gordo, C. O., Holdt, S. L., Francisci, D. D., Karakashev, D. B., and Angelidaki, I. (2014). Effective Harvesting of the Microalgae Chlorella protothecoides via Bioflocculation with Cationic Starch, Bioresource Technology, 167, pp. 214-218.
DOI
|
22 |
Papazi, A., Makridis, P., and Divanach, P. (2010). Chlorella minutissima using cell coagulants, Journal of Applied Phycology, 22, pp. 349-355.
DOI
|
23 |
Rashid, N., Rehman, S. U., and Han, J. I. (2013). Rapid Harvesting of Freshwater Microalgae using Chitosan, Process Biochemistry, 48, pp. 1107-1110.
DOI
|
24 |
Show, K. Y. and Lee, D. J. (2014). Algal Biomass Harvesting, In: pandey A., Lee, D. J., Chisti, Y., and Soccol, C. R., editors, Biofuels from Algae, Burlington, Elsevier, pp. 85-110.
|
25 |
Reddy, D. H. K., Lee, S. M., and Kim, J. O. (2013) A Review on Emerging Applications of Natural sericite and Its Composites, World Applied Science Journal, 27(11), pp. 1514-1523.
|
26 |
Salim, S., Bosma, R., Vermue, M. H., and Wijffels, R. H. (2011). Harvesting of Microalgae by Bioflocculation, Journal of Applied Phycology, 23, pp. 849-855.
DOI
|
27 |
Semerjian, L. and Ayoub, G. M. (2003). High-pH-Magnesium Coagulation-Flocculation in Wastewater Treatment, Advances in Environmental Research, 7(2), pp. 389-403.
DOI
|
28 |
Şirin, S., Trobajo, R., Ibanez, C., and Salvado, J..irin, S., Trobajo, R., Ibanez, C., and Salvadó, J. (2012). Harvesting the Microalgae Phaeodactylum tricornutum with Polyaluminum Chloride, Aluminium sulphate, Chitosan and Alkalinity-induced Flocculation, Journal of Applied Phycology, 24, pp. 1067-1080.
DOI
|
29 |
Vandamme, D., Foubert, I., and Muylaert, K. (2013). Flocculation as a Low-cost Method for Harvesting Microalgae for Bulk Biomass Production, Trends Biotechnology, 31, pp. 233-239.
DOI
|
30 |
Vandamme, D., Foubert, I., Fraeye, I., Meesschaert, B., and Muylaert, K. (2012). Flocculation of Chlorella vulgaris induces by High pH: Role of Magnesium and Calcium and Pracial Implications, Bioresources Technology, 105, pp. 114-119.
|