• 제목/요약/키워드: frequency-time domain method

검색결과 1,082건 처리시간 0.029초

Frequency Domain Processing Techniques for Pulse Shape Modulated Ultra Wideband Systems

  • Gordillo, Alex Cartagena;Kohno, Ryuji
    • Journal of Communications and Networks
    • /
    • 제9권4호
    • /
    • pp.482-489
    • /
    • 2007
  • In this paper, two frequency domain signal processing techniques for pulse shape modulation(PSM) ultra wideband(UWB) systems are presented. Firstly, orthogonal detection of UWB PSM Hermite pulses in frequency domain is addressed. It is important because time domain detection by correlation-based receivers is severely degraded by many sources of distortion. Pulse-shape, the information conveying signal characteristic, is deformed by AWGN and shape-destructive addition of multiple paths from the propagation channel. Additionally, because of the short nature of UWB pulses, timing mismatches and synchronism degrade the performance of PSM UWB communication systems. In this paper, frequency domain orthogonality of the Hermite pulses is exploited to propose an alternative detection method, which makes possible efficient detection of PSM in dense multipath channel environments. Secondly, a ranging method employing the Cepstrum algorithm is proposed. This method is partly processed in the frequency domain and can be implemented without additional hardware complexity in the terminal.

다물체계 운동 방정식 선형화를 통한 해상 풍력 발전기 동적 거동의 주파수 영역 해석 방법에 관한 연구 (A Study on the Method for Dynamic Response Analysis in Frequency Domain of an Offshore Wind Turbine by Linearization of Equations of Motion for Multibody)

  • 구남국;노명일;하솔;신현경
    • 한국CDE학회논문집
    • /
    • 제20권1호
    • /
    • pp.84-92
    • /
    • 2015
  • In this study, we describe a method to analysis dynamic behavior of an offshore wind turbine in the frequency domain and expected effects of the method. An offshore wind turbine, which is composed of platform, tower, nacelle, hubs, and blades, can be considered as multibody systems. In general, the dynamic analysis of multibody systems are carried out in the time domain, because the equations of motion derived based on the multibody dynamics are generally nonlinear differential equations. However, analyzing the dynamic behavior in time domain takes longer than in frequency domain. In this study, therefore, we describe how to analysis the system multibody systems in the frequency domain. For the frequency domain analysis, the non-linear differential equations are linearized using total derivative and Taylor series expansions, and then the linearized equations are solved in time domain. This method was applied to analysis of double pendulum system for the verification of its effectiveness, and the equations of motion for the offshore wind turbine was derived with assuming that the wind turbine is rigid multibody systems. Using this method, the dynamic behavior analysis of the offshore wind turbine can be expected to take less time.

On the extended period of a frequency domain method to analyze transient responses

  • Chen, Kui Fu;Zhang, Qiang;Zhang, Sen Wen
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.211-223
    • /
    • 2009
  • Transient response analysis can be conducted either in the time domain, or via the frequency domain. Sometimes a frequency domain method (FDM) has advantages over a time domain method. A practical issue in the FDM is to find out an appropriate extended period, which may be affected by several factors, such as the excitation duration, the system damping, the artificial damping, the period of interest, etc. In this report, the extended period of the FDM based on the Duhamel's integral is investigated. This Duhamel's integral based FDM does not involve the unit impulse response function (UIRF) beyond the period of interest. Due to this fact, the ever-lasting UIRF can be simply set as zero beyond the period of interest to shorten the extended period. As a result, the preferred extended period is the summation of the period of interest and the excitation duration. This conclusion is validated by numerical examples. If the extended period is too short, then the front portion of the period of interest is more prone to errors than the rear portion, but the free vibration segment is free of the wraparound error.

난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산 (Time-domain Computation of Broadband Noise due to Turbulence-Cascade Interaction)

  • 정철웅;정성수;정완섭;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.812-817
    • /
    • 2005
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipole broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to gust-cascade interaction.

  • PDF

파킨슨병 환자의 보행동결 검출을 위한 시간영역 알고리즘 (Time Domain of Algorithm for The Detection of Freezing of Gait(FOG) in Patients with Parkinson's Disease)

  • 박상훈;권유리;김지원;엄광문;이재호;이정환;이선민;고성범
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권4호
    • /
    • pp.182-188
    • /
    • 2013
  • This study aims to develop a practical algorithm which can detect freezing of gait(FOG) in patients with Parkinson's disease(PD). Eighteen PD patients($68.8{\pm}11.1yrs.$) participated in this study, and three($68.7{\pm}4.0yrs.$) of them showed FOG. We suggested two time-domain algorithms(with 1-axis or 3-axes acceleration signals) and compared them with the frequency-domain algorithm in the literature. We measured the acceleration of left foot with a 3-axis accelerometer inserted at the insole of a shoe. In the time-domain method, the root-mean-square(RMS) acceleration was calculated in a moving window of 4s and FOG was defined as the periods during which RMS accelerations located within FOG range. The parameters in each algorithm were optimized for each subject using the simulated annealing method. The sensitivity and specificity were same, i.e., $89{\pm}8%$ for the time-domain method with 1-axis acceleration and were $91{\pm}7%$ and $90{\pm}8%$ for the time-domain method with 3-axes acceleration, respectively. Both performances were better in the time-domain methods than in the frequency-domain method although the results were statistically insignificant. The amount of calculation in the time-domain method was much smaller than in the frequency-domain method. Therefore it is expected that the suggested time domain algorithm would be advantageous in the systematic implementation of FOG detection.

자기상관법을 이용한 제 1 포만트 검출법에 관한 연구 (On a Study of Detecting First Formant Using Autocorrelation Method)

  • 강은영;민소연;배명진
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.285-288
    • /
    • 2001
  • In the speech analysis, to estimate formant center frequencies exactly is very important. If we know formant frequencies, we can expect which pronunciation is uttered. Generally, the magnitude of first formant frequency in voiced speech is 10dB more than other formant frequency. So, the shape of voice signal in time domain is affected by mainly first formant. Therefore we can get first formant frequency roughly by using ZCR(Zero Cross Rate). In this paper, we proposed the improvement method to get first formant frequency by using ZCR. We did autocorrelation before getting ZCR. This procedure makes voice signal smooth so, first formant in voice signal is emphasized. As a result of this method, we got more exact ZCR and first formant frequency. Conventional method of formant estimate is done in frequency domain but proposed method is done in time domain. So, this is very simple.

  • PDF

절연전선 결함 위치 추정에 대한 시간-주파수 영역 반사파 계측법의 적용 (Estimation of Fault Location on a Power Line using the Time-Frequency Domain Reflectometry)

  • 두승호;곽기석;박진배
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.268-275
    • /
    • 2008
  • In this paper, we introduce a new method for detecting and estimating faults on a power line using the time-frequency domain reflectometry system. The system rests upon time-frequency signal analysis and uses a chirp signal which is multiplied by Gaussian envelope. The chirp signal is used as a reference signal, and we can get the reflected signal from a fault on a wire. To detect and estimate faults, we analyze the reflected signal by Wigner time-frequency distribution function and normalized time-frequency cross correlation function. In this paper we design an optimal reference signal for power line and implement a system for estimating fault distance on a power line with the TFDR implemented by PXI equipments. This approach is verified by some experiments with HIV 2.25mm power lines.

Nonlinear effects on motions and loads using an iterative time-frequency solver

  • Bruzzone, Dario;Gironi, C.;Grasso, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.20-26
    • /
    • 2011
  • A weakly nonlinear seakeeping methodology for predicting motions and loads is presented in this paper. This methodology assumes linear radiation and diffraction forces, calculated in the frequency domain, and fully nonlinear Froude-Krylov and hydrostatic forces, evaluated in the time domain. The particular approach employed here allows to overcome numerical problems connected to the determination of the impulse response functions. The procedure is divided into three consecutive steps: evaluation of dynamic sinkage and trim in calm water that can significantly influence the final results, a linear seakeeping analysis in the frequency domain and a weakly nonlinear simulation. The first two steps are performed employing a three-dimensional Rankine panel method. Nonlinear Froude-Krylov and hydrostatic forces are computed in the time domain by pressure integration on the actual wetted surface at each time step. Although nonlinear forces are evaluated into the time domain, the equations of motion are solved in the frequency domain iteratively passing from the frequency to the time domain until convergence. The containership S175 is employed as a test case for evaluating the capability of this methodology to correctly predict the nonlinear behavior related to wave induced motions and loads in head seas; numerical results are compared with experimental data provided in literature.

A STUDY ON NONSTATIONARY RANDOM VIBRATION OF A VEHICLE IN TIME AND FREQUENCY DOMAINS

  • Zhang, L.J.;Lee, C.M.;Wang, Y.S.
    • International Journal of Automotive Technology
    • /
    • 제3권3호
    • /
    • pp.101-109
    • /
    • 2002
  • A time domain method for solving nonstationary random vibration caused by vehicle acceleration is first proposed in which a time changing model is established for representing nonstationary excitation of a rough road. Furthermore a novel frequency domain method called the transient power spectral density with spatial frequency (TPSD) is presented to obtain a response of vehicle system in frequency domain. This method has been proved to be valid by comparing numerical results with the exact solution.

다중경로 페이딩 채널에서 QAM을 사용하는 OFDM시스템의 효율적인 등화기법 설계 및 성능분석 (Design and Performance Analysis of the Efficient Equalization Method for OFDM system using QAM in multipath fading channel)

  • 남성식;백인기;조성호
    • 한국통신학회논문지
    • /
    • 제25권6B호
    • /
    • pp.1082-1091
    • /
    • 2000
  • 본 논문에서는 QAM (Quadrature Amplitude Modulation)을 시용하는 OFDM (Orthogonal Frequency Division Multiflexing)시스템에서 비이상적인 채널에 고속으로 데이터를 전송 시 발생하는 신호의 왜곡으로부터 보다 빠르고 효율적으로 등화를 하기 위한 등화기법을 제안하였다. 일반적으로 기존 OFDM 시스템 등화기법으로 주파수 영역에 단일 탭 선형 등화기를 사용하는 방법이 많이 사용 되었다. 이 경우 실제시스템에서 채널 환경이 시간에 따라 빠르게 변하게 될 경우 채널에 의한 왜곡을 완벽하게 보상해 줄 수없다. 그러므로 본 논문에서는 주파수 영역에 단일 탭 션형 등화기를 적용하는 대신 비선형 등화기를 적용하였으며 비선행 등화기의 단점인 낮은 SNR(Signal-to-Noise Ratio)에서의 급속한 성능 저하를 보완해주기 위하여 시간영역에 선형 등화기를 병행 사용하였다. 주파수 영역의 경우 비선형 등화기를 적용함에 있어 in-phase성분과 quadrature성분으로 구성되어 있는 QAM신호가 complex 채널 통과 시 fading에 의해 왜곡된 신호도 noise에 의해 왜곡된 신호처럼 in-phase성분과 quadrature 성분의 amplitude만이 변하므로 기존의 등화기 구조에서 cross성분을 제거하였고 이로 인하여 발생할 수 있는 약간의 오차를 보상해 주기위해 시간영역 등화가와 수렴 속도가 빠르고 오차가 적은 알고리즘을 사용하여 복잡도가 줄어든 등화기 구조를 제안하였다. 시간영역의 경우 채널왜곡에 강한 Goldcode를 trauung-sequence로 보호구간에 삽입하여 매 frame 마다 등화를 행하여 주파수영역 등화기의 성능을 보완해줌으로써 기존의 등화기법과 비교하여 보다 빠르고 효율적인 등화를 수행할 수 있는 등화기법을 제안 하였다.

  • PDF