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ABSTRACT: A weakly nonlinear seakeeping methodology for predicting motions and loads is presented in this paper. This 

methodology assumes linear radiation and diffraction forces, calculated in the frequency domain, and fully nonlinear Froude-

Krylov and hydrostatic forces, evaluated in the time domain. The particular approach employed here allows to overcome 

numerical problems connected to the determination of the impulse response functions. The procedure is divided into three 

consecutive steps: evaluation of dynamic sinkage and trim in calm water that can significantly influence the final results, a 

linear seakeeping analysis in the frequency domain and a weakly nonlinear simulation. The first two steps are performed 

employing a three-dimensional Rankine panel method. Nonlinear Froude-Krylov and hydrostatic forces are computed in the 

time domain by pressure integration on the actual wetted surface at each time step. Although nonlinear forces are evaluated 

into the time domain, the equations of motion are solved in the frequency domain iteratively passing from the frequency to the 

time domain until convergence. The containership S175 is employed as a test case for evaluating the capability of this 

methodology to correctly predict the nonlinear behavior related to wave induced motions and loads in head seas; numerical 

results are compared with experimental data provided in literature. 
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INTRODUCTION 

 

Since long time seakeeping problems have been mostly 

studied using linear methods based into the frequency domain. 

However, when considering increasing wave heights, they 

cannot deal with important non linear effects that influence 

motions, forces and, especially, wave loads. Different 

formulations have been proposed in literature in order to 

include nonlinear effects in the evaluation of motions and 

loads in waves. They are solved in the time domain both with 

two and three dimensional approaches. These methods are 

generally based on potential flow theory and often use 

simplifying hypotheses to reduce the complexity involved in 

facing fully nonlinear methods. Recently, a growing number 

of studies have also been carried out in order to deal with the 

viscous flow seakeeping problem, solving the Reynold 

averaged Navier-Stokes equations in the time domain. These 

methods are very promising but still require considerable 

computational time and resources. An extensive bibliography 

can be found in literature, but a comprehensive classification 

and review is given in Beck and Reed (2000).  

Some approaches (sometime called "hybrid" or "blended” 

methods) allow considering a few nonlinear effects, generally 

related to hydrostatic and Froude-Krylov forces, which are in 

fact easy to compute in time domain in their intrinsic 

nonlinear form, by pressure integration over the 

instantaneous wetted surface. Diffraction and radiation forces 

are instead obtained transforming in the time domain their 

frequency domain counterparts. These methods, which can be 

employed in a wide range of applications, have been 

developed because of the problems associated with fully 

nonlinear computations (for instance, numerical stability and 

wave breaking) and in order to reduce computational time 

and resources required, but have proved to provide 

satisfactory results for engineering purpose in a wide range of 

sea states. For the numerical simulations here proposed, a 

three-dimensional Rankine panel method has been employed 

for both the steady state and the linear seakeeping problems. 

Then, in order to take into account nonlinearities, a blended 

method of the family in the foregoing description has been 

used in an alternative dual approach: Froude-Krylov and 

hydrostatic forces are evaluated in the time domain and the 

equations of motion are solved in the frequency domain (in 

their weakly nonlinear form) by an iterative procedure. A 

short presentation of the basic theory and of the numerical 

method will be given at first, then the application to a case 

study for which experimental data are available will be 

described and discussed.  
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FORMULATION 
 

The main steps of the procedure employed are 

represented by the consecutive solution of three different 

problems: the steady flow around a ship advancing at 

constant speed, for determining iteratively the dynamic 

sinkage and trim; the unsteady hydrodynamic problem in the 

frequency domain, used to evaluate radiation and diffraction 

forces; the weakly nonlinear seakeeping analysis. The present 

approach is based on the assumptions of inviscid fluid and 

irrotational flow, which allows the employment of a potential 

theory. The following formulation is referenced to an 

orthogonal coordinate inertial system (x, y, z) advancing at 

the vessel speed U. The xy plane coincides with the 

undisturbed free surface, x is the symmetry axis of the still 

water plane and is assumed positive astern, z-axis is positive 

upwards.  

 
Analysis of the unsteady problems in the frequency 

domain 

 

For a proper number of meaningful encounter frequencies 

e  ship motions are defined by the instantaneous position of 

a body fixed reference system with respect to the previous 

system and may be described by a vector nk(t), with k=1,…,6. 

A regular incident wave ei t
t ae  is assumed. The 

hypothesis of small motion amplitudes allow us to express 

the motions as: 

 

ei t
k k et e                            (1) 

 

where  k e   is the complex amplitude of the 
thk  motion 

component and e the encounter frequency. k  can be 

determined solving the following linear system of complex 

equations: 
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where 1,2,3j  refers to the , ,x y z  force components 

respectively and 4,5,6j  to the corresponding three 

moment components. Mjk and Cjk represent the mass and 

hydrostatic restoring matrix; Ajk and Bjk are the added-mass 

and the damping coefficients; finally  j eF   are the 

complex amplitudes of the exciting forces and can be 

expressed as the sum of incident Froude Krilov and 

diffraction forces respectively: 

 

( ) ( ) ( )FK D
j e j e j eF F F                       (3) 

 

The determination of the relevant quantities Ajk, Bjk and 

 D
j eF  is carried out solving a set of boundary value 

problems which are posed in terms of a total velocity 

potential Φ that must satisfy the Laplace equation Φ∆=0 into 

the fluid domain coupled with nonlinear boundary conditions 

on the free surface and on the hull surface. Linearization of 

the relevant boundary conditions is possible recurring to a 

perturbation approach in which some quantities are assumed 

of a smaller order of magnitude around some suitable base 

flow potential. The steady potential, the double model 

potential or the free stream potential can be assumed at a 

descending order as the basis flow.  

The total potential can be expressed as the sum of the 

potential of a steady flow ( S ) and of a perturbation 

unsteady potential ( US ); in turn, the unsteady perturbation 

potential may be written as superposition of an incident wave 

potential ( FK ), of a diffraction potential ( D ) and of six 

radiation potentials ( k ). 
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By assuming the steady potential as a term of leading 

order, a first linearization can be carried out for the unsteady 

problems. The steady potential may be also expressed as the 

sum of some base flow and of a lower order steady 

perturbation. Denoting with 1 2 3( , , )n n n n  the unit normal 

and with 4 5 6( , , )n n n r n  , the hull boundary conditions 

are: 
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                              (5) 

 

for the six radiation potentials and for the diffraction 

potential respectively, where the km  are the components of 

the vector ( )Sn    for 1,2,3k  and of the vector 

( )Sn r    for 4,5,6k   

 

On the free surface, the linearized boundary conditions 

can be expressed via the linear operator L  as: 
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To work out all the involved boundary value problems, 

each of the unknown potentials is expressed in term of a 

distribution of Rankine sources upon the hull and the free 

surface: 
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The hull and a portion of the free surface are 

approximated with quadrilateral panels, considering a 

uniform source strength on each. All the involved boundary 

value problems are hence solved in terms of these unknown 

source strengths. A suitable radiation condition is finally 

posed at the forward border of the computational domain. In 

the present method radiated and diffracted waves are 

considered not to propagate ahead the ship and hence it can 

be applied only for / 0.25eU g  . A similar approach has 

been employed for solving the steady flow problem. More 

details on the methodology can be found in Bruzzone (2003).  

It should be finally pointed out that, since the free surface 

computational domain is limited, its extension must be 

carefully considered in order to avoid wave reflections; 

moreover, the dimensions of the free surface panels should be 

chosen taking into account incident, radiated and diffracted 

wave lengths. 

 

 

Time domain nonlinear analysis 

 

Applying the impulse theory (Cummins, 1962), it is 

possible to write the equations of motion in the time domain 

as: 
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with 1,...,6j   and k , k  the first and the second time 

derivatives of k . A  and B  are the infinite-frequency 

added mass and damping coefficients  D

jF t ,  FK

jF t  and 

 H

kF t  represent the diffraction, Froude-Krylov and 

hydrostatic forces (and moments) respectively, while jkh  

are impulse response functions (or retardation functions).  

If the hydrostatic forces are considered linearly dependent on 

the motions and Froude-Krylov and diffraction forces to be 

linear functions of the wave elevations only, Eq. 8 represents 

a linear system of differential equations as both coefficients 

and exciting forces do not depend on motions and on theirs 

derivatives. If, on the contrary, fully nonlinear hydrostatic and 

Froude-Krylov forces are introduced, the system results to be 

nonlinear as the exciting forces depend also on the instantaneous 

position of the hull and hence on the unknown motions.  

The system of Eq. 8, in its nonlinear form, is generally 

solved in the time domain, evaluating at each time step the 

accelerations and calculating consequently velocities and 

displacements by a numerical integration.  

As shown by Ogilvie (1964), Eq. 8 and Eq. 2 are related by 

Fourier transforms and the impulse responses can be derived 

from the frequency dependent added-mass and damping 

coefficients and vice versa according to the following 

relationship: 
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This approach is subjected to some inconveniences and 

uncertainties, mainly related to the limited range of frequency 

in which damping and added mass coefficients are known 

from numerical calculations. Even if the nonlinear forces 

must be evaluated in the time domain, the system of Eq. 8 

can be solved both in the time and in the frequency domain, 

at least until it is weakly nonlinear. The choice is related to 

the kind of analysis it is expected to be carried out. For this 

application the frequency domain has been preferred, as it 

allows avoiding the initial transient phase and it is faster, as 

the computational time is connected with the nonlinear 

degree of the problem and the time step is not constrained by 

time integration convergence requirements. Denoting with 

  the Fourier transform and with 1  its inverse, k  can 

be evaluated by: 
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The Fourier transform into the frequency domain of Eq. 8 can 

be written as: 
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The system in Eq. 11, in its nonlinear form, cannot be 

solved directly, because of the nonlinear dependence of 

Froude-Krylov and hydrostatic forces on ship motions. The 

following iterative procedure has been hence adopted:   
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where p represents an iteration index and jkC is the linear 

hydrostatic restoring matrix.  

The motions obtained in the previous iteration are 

transferred in the time domain, where nonlinear Froude-

Krylov and hydrostatic forces are evaluated, integrating 

hydrostatic and hydrodynamic pressure over the actual 

wetted surface under the incident wave profile. Then the 

amplitude spectra of the forces are evaluated from the time 

histories by a Fast Fourier Transform and the equations of 

(12) 
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motion are solved in the frequency domain. The linear 

solution is used as the first guess. 

The jkC terms are considered in both sides of Eq. 12 in 

addition to the nonlinear hydrostatic forces to render the 

procedure more robust and as an aid to the convergence of 

the iterative procedure. 

 

Description of the numerical method 

 

After the solution of the boundary value problems the 

relevant forces and coefficients can be determined for 

calculating the impulse response functions or for the iterative 

process frequency-time domain. 

Different methods in the frequency domain could in principle 

be chosen to evaluate the quantities necessary for the 

procedure indicated in the previous paragraph as, for instance, 

a strip theory, a Rankine source method (Bruzzone and 

Grasso, 2007) or a 3D theory based on Green functions. 

The Rankine source method seems to offer some 

advantages. It allows performing the three important steps 

involved in the overall process in a quite homogeneous way. 

At first it is possible to evaluate the dynamic sinkage and 

trim in calm water which is the starting mean configuration 

of the ship. In addition it could be chosen to select the steady 

potential as the basis potential to solve the various boundary 

value problems. The method can also deal with multihull 

marine vehicles and their hydrodynamic interactions. Finally 

the hull mesh can be used with minor modifications in the 

complete procedure. 

To evaluate the nonlinear Froude-Krylov and hydrostatic 

forces the hull is described by a structured grid of lines, 

depending on two normalized parameters u and v. At each 

time step the domain describing the wetted surface is 

evaluated, as well as the pressure distribution on it. Forces 

and moment are then calculated by analytical integrations of 

their distributions treated as bi-cubic function on the domain 

of the parameter u and v.  

 

Loads estimation 

 

Considering all the forces applied on a given cross 

section, the dynamic vertical shear force ( 3V ) can be 

evaluated as the difference between the vertical component of 

inertial force ( 3I ) and the sum of the vertical components of 

external forces acting on the part of hull forward of the cross 

section analyzed. As it can be seen in Eq. 13, the external 

forces here considered are related to radiation ( jR ), 

diffraction ( jD ), Froude-Krylov and hydrostatic ( jFK ) 

contributions.  

 

333333 HFKDRIV                       (13) 

 

Vertical bending moment ( 5M ) is calculated in a similar 

way, considering moments of the forces with respect of the 

cross section considered: 
 

555555 HFKDRIM                      (14) 

Assumptions on forces are the same employed for solving 

the unsteady motion problem, providing a formulation 

consistent with the previous calculations. Loads due to 

Froude-Krylov and hydrostatic forces are computed in the 

time domain considering the inherent non linearity as 

previously described. Loads due to radiation forces are based 

on the linear seakeeping calculation even if they depend on 

nonlinear velocities and accelerations. Inertial loads are due 

to nonlinear accelerations while loads related to diffraction 

forces are supposed completely linear and depend only on 

incident waves.  

 

 

 

A CASE STUDY: RESULTS AND DISCUSSION 
 

In order to test the methodology, the S175 hull has been 

chosen as an application of the present method. In fact, for 

this containership experimental data provided by several 

authors, regarding both motions and loads, are available in 

literature for different wave amplitudes/length ratios. They 

can be compared with computed results. In this paper the 

experimental data provided by Fonseca and Guedes Soares 

(2004) who analyzed the behavior of a S175 hull model in 

head regular waves, have been chosen to be correlated. 

Several wave lengths and three wave slopes have been 

considered for a Froude number 0.25nF  . 

Fourier analysis of the converged time histories related to 

each regular wave and to the considered wave slope allows 

providing the harmonic content. Figs. 1 and 2 represent the 

non dimensional first harmonic of heave and pitch for three 

different wave slopes. From these figures, though the 

nonlinear effects due to the wave slope seem to be adequately 

captured and manifest the same trend as the experimental 

results, a sensible overestimation around the peak values of 

heave and pitch can be noted. This outcome has been thought 

to be due to a prediction of low values of damping 

coefficients coming from the frequency domain computations. 

This behavior appears to be quite common, for this kind of 

ship, when Rankine sources are employed. 
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Fig. 1 Heave motion amplitude first harmonic – Amidships. 
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Fig. 2 Pitch motion amplitude first harmonic – Amidships. 

 

Also strip theories tend to overestimate motions at 

resonance for this vessel, even if in a smaller amount 

(Pedersen, 2000). On the contrary, as the frequency increases, 

especially in the pitch motion, after the peak zone, 

experimental data seem slightly higher than the numerical 

result, but the extent of this difference at each frequency is 

anyway small. To overcome the peak overstimation of these 

damping coefficients could be augmented on the basis of 

some empirical method. Since in this paper the objective is 

focused on nonlinear effects, such correction has not been 

adopted for the results herein presented.  

Figs. 3 and 4 present the second harmonics; it should be 

considered that the order of magnitude of the results is lower 

than those of the first harmonic, so the differences between 

experiments and computations are higher in percent. It 

appears that, as for the case of the first harmonics, the 

numerical method generally overestimates experimental data. 

However the overall trend seems to be comparable even if the 

effect of the wave slope is not always captured. 
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Fig. 3 Heave motion amplitude second harmonic –Amidships. 
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Fig. 4 Pitch motion amplitude second harmonic – Amidships. 

 

A better agreement is observed about the mean values of 

heave and pitch (i.e. the zero frequency component of the 

Fourier transform of the time histories) reported in Figs. 5 

and 6. Here, on the basis of the available experimental values, 

the overall trend and the assessment of the effects of the 

wave slopes appear to be adequate enough. 
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Fig. 5 Heave motion amplitude mean values – Amidships. 
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Fig. 6 Pitch motion amplitude mean values – Amidships. 
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As regards the wave loads, the first harmonic of vertical 

shear forces and vertical bending moment at amidships and at 

station 15 are represented in Figs. 7-10 respectively. The 

results seem to be in a reasonable agreement with those 

coming from the experiments, both as general trend and as 

effects of the wave slopes. 
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Fig. 7 Vertical shear force amplitude – Amidships. 
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Fig. 8 Vertical bending moment amplitude - Amidships. 
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Fig. 9 Vertical shear force amplitude – Station 15. 
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Fig. 10 Vertical bending moment amplitude – Station 15. 

 

Also in this case numerical values overpredict 

experimental ones in the frequency ranges of resonance; 

nevertheless it must be remarked again that the 

overpredictions in wave motions reflect on loads. The 

vertical bending moment at station 15 shows a significant 

overestimation also for higher frequencies. This behavior 

cannot be related at all to errors in the prediction of motions. 

Analogous wrong trend was found also by Fonseca and 

Guedes Soares (2005), who employed a strip theory. 
 

 

 
 

Fig. 11 Time history of vertical shear force at Amidships. 

 
 

 
 

Fig. 12 Time history of vertical bending moment at 

Amidships. 
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Finally Figs. 11-12 represent the time histories of vertical 

shear and vertical bending moment amidships, where the 

nonlinear effects causing the differences between hogging 

and sagging can be clearly noted. It is interesting to highlight 

how nonlinear effects on loads are found also with small 

wave amplitudes; this behavior is confirmed by experimental 

results and can be related to the flare. 

 

 

 

CONCLUSIONS 

 
The paper presents a weakly nonlinear method for 

evaluating motions and loads in waves. Radiation and 

diffraction forces are assumed linear whereas Froude Krylov 

and hydrostatic forces are evaluated in the time domain 

allowing for their non linearity. With respect to 

methodologies that adopt similar assumptions, the problem is 

approached in a different way. A procedure has been 

proposed that iteratively solves the equation of motions in the 

frequency domain evaluating only the nonlinear forces in the 

time domain. This procedure allows reducing computational 

time and does not require the evaluation of the initial 

transient phase. 

As a test case for this study, the well known S175 

containership has been chosen considering its behavior in 

regular head waves. The obtained numerical results evidence 

a satisfactory correlation with the experiments, excluding in 

some cases the resonance frequency range where motions and 

loads turned out to be overestimated. Trends of non linear 

effects against wave slopes result adequately predicted even 

if the accuracy of their evaluation is related to the accuracy in 

the prediction of the motions. Further studies could be related 

to the improvement in the prediction of linear forces in order 

to reduce the overestimation of motions probably due to the 

lack of damping at resonance. 
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