• Title/Summary/Keyword: frequency-space domain

Search Result 284, Processing Time 0.03 seconds

Study on the Aeroservoelastic Stability Analysis with ZAERO (ZAERO를 활용한 서보공력탄성학적 안정성 해석기법 연구)

  • Rho, Hong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • The aeroservoelastic analysis that deals with the interactions of the inertial, elastic, and aerodynamic forces and the influence of the control system have been performed. MSC Nastran was used for the free vibration analysis of the structure model as the pre-analysis. ZAERO was used to calculate the unsteady aerodynamic forces. The unsteady aerodynamic forces were verified by comparing with Doublet Hybrid Method. Karpel's Minimum-State Approximation method was used for approximation of the aerodynamic forces to the Laplace domain in the frequency domain. The aeroservoelastic state-space equation was obtained by combining the aeroelastic equation with the actuator dynamics. The analysis of aeroservoelastic stability concerning the elevator input of the high aspect ratio model was performed. The root-locus method and time-integration method were used for the analysis of aeroservoelastic in frequency and time domain.

Loop-loop EM inversion and its applicability to subsurface exploration

  • Sasaki, Yutaka
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.3-6
    • /
    • 2006
  • There are three types of frequency-domain loop-loop EM induction method, depending on the loop separation and their location relative to the ground surface: horizontal-loop EM (HLEM), fixed small-loop EM, and helicopter-borne EM (HEM) methods. Multidimensional inversion provides tomographic images of the subsurface resistivity structure and thus enhances the interpretational accuracy of loop-loop EM data. HLEM method is shown to be effective for exploring groundwater resources in weathered and fractured crystalline basement terrains in semi-arid regions. Also, HEM method is useful for locating weak zones in landslide areas. The applicability of inversion to small-loop EM data depends solely on the S/N ratio. The quadrature response of small-loop EM data can only give the equivalent conductivity of a homogenous half-space model, and thus the in-phase component is essential in inverting EM data. However, the in-phase response is much lower and decreases more rapidly with decreasing frequency than the quadrature response. Further work is needed to obtain conductivity-depth images from small-loop EM data.

  • PDF

Design and Analysis of an Active Vibration Isolation System (능동형 제진 시스템의 설계 및 해석)

  • Moon, Jun-Hee;Pahk, Heui-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.647-650
    • /
    • 2004
  • The modeling of an active vibration isolation system is accomplished by using the equivalent spring constant, mass and rotational Inertia of each component. The detailed model of the actuation module is successful for describing its frequency-domain performance but also too complicated to implement it to actual system for control so that the order of the model is reduced up to the degree that preserves its characteristic in the low frequency range. The reduced model is suitable for identifying the unknown system parameters such as damping constants of components. The overall isolation system is described by using the reduced model of the actuation module. The accurate model ing and system parameter identification that is essential for the control of the active vibration isolation system is attained successfully.

  • PDF

An Analysis of the Visual Attention on the Urban Landscape with Pilotis Space using Eye Tracking in terms of the Conception of 'Space and Infinity' ('공간과 무한성' 개념의 측면에서 도시경관에 대한 시각적 분석 - 필로티 공간의 유무에 따른 아이트래킹 기법 실험분석을 바탕으로 -)

  • Cho, Hyeong-Kyu
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.6
    • /
    • pp.23-30
    • /
    • 2018
  • Gordon Cullen, who tried to understand urban landscapes in terms of visual attention, introduced a concept called 'Space and Infinity' in his book 'Townscape'. According to him, urban images like infinity spreading across the sky are more effectively created when we happen to see an open space while walking along a ground-level street than when we look at the sky. This study aims to quantitatively examine if urban observers pay more attention to spaces like pilotis on the bottom of a building. Thus, this study collected observers on actual urban landscape images and partially-edited images and conducted an experiment by adopting Eye-movement Tracking to find out if they actually pay more visual attention to a space like pilotis. This study selected a total of 50 people as research subjects and divided them into two groups. Image 1 was shown to one group, and Image 2 with the pilotis space edited was shown to the other group. As an experiment to find objective evidences on Gordon Cullen's 'Space and Infinity', this study analyzed difference between Image 1 and Image 2, and it was found that the domain of pilotis showed a value five times higher than the average visual attention since it attracted much visual attention although it was very small in area. That is, it has objectively clarified that people get most fascinated with a place with infinite images in the background like a pilotis space out of all the urban landscapes as Gordon Cullen's theory. In addition, the differences in visual concentration of pilotis space by sex, by subject was examined, and there was no significant difference in visual concentration of pilotis space by gender. As a result of examining the difference of visual concentration by classifying the subjects into architectural related major, the major group showed higher frequency of viewing than the non - major group.

Vortex sheddings and Pressure Oscillations in Hybrid Rocket Combustion (하이브리드로켓 연소실의 와류발생과 연소압력 진동)

  • Park, Kyungsoo;Shin, Kyung-Hoon;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.40-47
    • /
    • 2013
  • The similarity in internal flow of solid and hybrid rocket suggests that hybrid rocket combustion can be susceptible to instability due to vortex sheddings and their interaction. This study focuses on the evolution of interaction of vortex generated in pre-chamber with other types of vortex in the combustor and the change of combustion characteristics. Baseline and other results tested with disks show that there are five different frequency bands appeared in spectral domain. These include a frequency with thermal lag of solid fuel, vortex shedding due to obstacles such as forward, backward facing step and wall vortices near surface. The comparison of frequency behavior in the cases with disk 1 and 3 reveals that vortex shedding generated in pre-chamber can interact with other types of vortex shedding at a certain condition. The frequency of Helmholtz mode is one of candidates resulting to a resonance when it was excited by other types of oscillation even if this mode was not discernable in baseline test. This selective mechanism of resonance may explain the reason why non-linear combustion instability occurs in hybrid rocket combustion.

Frequency Dependent Properties of Tris(8-Hydroxyquinoline) Aluminum Thin Films

  • Lee, Yong-Soo;Park, Jae-Hoon;Choi, Jong-Sun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.70-74
    • /
    • 2001
  • Admittance or impedance spectroscopy is one of the powerful tools to study dielectric relaxation and loss processes in organic and inorganic materials. In this study, the frequency dependent properties of an indium tin oxide/tris(8-hydroxyquinoline) aluminum($Alq_3$)/aluminum structure have been studied. The conductance of the $Alq_3$ film increases with the DC applied voltage up to 4V and decreases above 4V in the low frequency region. This indicates that the resistance of the device decreases with the applied bias due to the carrier injection enhancement, thereafter the injected carriers form the space charge and the additional injection of carriers is prevented. The Cole-Cole plot of the admittance takes a one-semicircle shape, which means that the device can be modeled as a parallel resistor-capacitor network. The resistance and capacitance were estimated as 8.62k${\Omega}$ and 2.7nF, respectively, at 3V in the low frequency region. The dielectric constant ( ${\epsilon}'$ ) of the $Alq_3$ film is independent of the frequency in the low frequency region below 100kHz, while the frequency dependency was observed at above 100kHz. The dielectric loss factor ( ${\epsilon}"$ ) of the $Alq_3$ film shows the dielectric dispersion below 100kHz and dielectric absorption in higher frequency domain. The dispersion is thought to be related to the hopping process of the carriers. The ${\epsilon}"$ is proportional to the reciprocal of the frequency. The dielectric relaxation time was extracted to about 0.318${\mu}s$ from the dielectric absorption spectrum.

  • PDF

Design of H Repetitive Control Systems using State Feedback (상태 궤환을 이용한 H 반복 제어 시스템 설계)

  • Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.6-11
    • /
    • 2014
  • Repetitive control is a specialized control scheme to track and/or attenuate a periodic reference trajectory and/or disturbance. Most researches about repetitive control have been performed in the frequency domain. Recently, several approaches to deal with repetitive control systems in the state space are developed by representing a q filter as a state-space equation. This paper presents a design method of a repetitive control system in the state space to satisfy $H_{\infty}$ performance. The overall system is composed of a plant, a repetitive controller, and a state-feedback controller, which can be converted to a standard form used in $H_{\infty}$ control. A LMI (Linear Matrix Inequality)-based stability condition is derived for fixed state-feedback gains. Under a given q filter, another LMI condition is derived to improve $H_{\infty}$ performance and is employed to find state-feedback gains by solving an optimization problem. Finally, to verify the feasibility of the proposed method, a numerical example is demonstrated.

3-D Axisymmetric Fluid-Structure-Soil Interaction Analysis Using Mixed-Fluid-Element and Infinite-Element (혼합형 유체요소와 무한요소를 이용한 3차원 축대칭 유체-구조물-지반 상호작용해석)

  • 김재민;장수혁;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.257-266
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on/in horizontally layered half.space considering the effects of the interior fluid and exterior soil medium in the frequency domain. To capture the essence of fluid-structure-soil interaction effects effectively, a mixed finite element with two-field (u, p) approximation is employed to model the compressive inviscid fluid, while the structure and soil medium are presented by the 3-D axisymmetric finite elements and dynamic infinite elements. The present FE-based method can be applied to the system with complex geometry of fluid region as well as with inhomogeneous near-field soil medium, since it can directly model both the fluid and the soil. For the purpose of verification, dominant peak frequencies in transfer functions for horizontal motions of cylindrical fluid storage tanks with rigid massless foundation on a homogeneous viscoelastic half.space are compared with those by two different added mass approaches for the fluid motion. The comparison indicates that the Present FE-based methodology gives accurate solution for the fluid-structure-soil interaction problem. Finally, as a demonstration of versatility of the present study, a seismic analysis for a real-scale LNG storage tank embedded in layered half.space is carried out, and its member forces along the height of the structure are compared with those by an added mass approach developed by the present writers.

  • PDF

Seismic evaluation of different types of electrical cabinets in nuclear power plants considering coupling effects: Experimental and numerical study

  • Md Kamrul Hasan Ikbal;Dong Van Nguyen;Seokchul Kim;Dookie Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3472-3484
    • /
    • 2023
  • The objective of this research is to assess the seismic performance of different types of electrical cabinets in nuclear power plants. The cabinets under investigation are: (a) Case 1: a short single cabinet; (b) Case 2: a tall single cabinet; (c) Case 3: separated cabinets; and (d) Case 4: a combined cabinet with coupling effects. To accurately capture the real behavior of the cabinet, three-dimensional finite element models are developed using ANSYS with connection non-linearity. Frequency domain decomposition (FDD) is used to determine the dynamic properties of the cabinets from shaking table testing data, and these results are utilized to validate the numerical model. The close match between the experimental and numerical results obtained from the modal analysis demonstrates the accuracy of the numerical model. Subsequently, transient structural analysis is performed on the validated models to explore seismic performance. The results show that the acceleration response of the combined cabinet is lower than the single cabinet and the separated cabinet. This observation suggests that top anchors used to combine two different types of cabinets play a crucial role in assessing the efficiency and seismic resistance of electrical cabinets in a nuclear power plant.

Improving Image Quality of MRI using Frequency Filter (Frequency Filter를 사용한 MRI 영상 화질의 향상)

  • Kim, Dong-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.309-315
    • /
    • 2009
  • Image reconstruction of Inverse Fourier Transform after Frequency Domain Data is filtered applies to Image signal acquired from MR. There are various kinds of image processing techniques; image preprocessing, image reconstruction, image compression, image restoration image mixture, noise and artifact elimination, and image quality improvement. In this paper, optimum filter applicable to diagnosis in clinic by comparing and analyzing the characteristics of the filter will be explained. Fermi-Dirac filter will improve the image quality better than the previous MR image.