DOI QR코드

DOI QR Code

Study on the Aeroservoelastic Stability Analysis with ZAERO

ZAERO를 활용한 서보공력탄성학적 안정성 해석기법 연구

  • Rho, Hong-Gi (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Bae, Jae-Sung (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Hwang, Jai-Hyuk (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 노홍기 (한국항공대학교 항공우주 및 기계공학과) ;
  • 배재성 (한국항공대학교 항공우주 및 기계공학부) ;
  • 황재혁 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2019.09.02
  • Accepted : 2020.07.13
  • Published : 2020.10.31

Abstract

The aeroservoelastic analysis that deals with the interactions of the inertial, elastic, and aerodynamic forces and the influence of the control system have been performed. MSC Nastran was used for the free vibration analysis of the structure model as the pre-analysis. ZAERO was used to calculate the unsteady aerodynamic forces. The unsteady aerodynamic forces were verified by comparing with Doublet Hybrid Method. Karpel's Minimum-State Approximation method was used for approximation of the aerodynamic forces to the Laplace domain in the frequency domain. The aeroservoelastic state-space equation was obtained by combining the aeroelastic equation with the actuator dynamics. The analysis of aeroservoelastic stability concerning the elevator input of the high aspect ratio model was performed. The root-locus method and time-integration method were used for the analysis of aeroservoelastic in frequency and time domain.

구조적 특성 및 공력의 상호작용과 조종면 작동기의 제어 시스템의 영향을 고려한 서보공력탄성 해석을 수행하였다. 공탄성 안정성 해석을 위해서 선행되어야 하는 구조모델의 자유진동 해석은 유한요소 해석 프로그램 MSC Nastran을 사용하였다. 비정상 공기력 계산에 ZAERO를 사용하였다. 비정상 공기력 검증에 Doublet Hybrid Method를 사용하였다. Karpel의 최소상태근사법을 이용하여 주파수 영역의 공기력을 라플라스 영역으로 근사하였다. 공탄성 상태방정식을 구동기의 동역학 상태방정식과 결합하여 서보 공탄성 모델의 상태공간방정식을 구성하였다. 고세장비 모델의 승강타 입력에 따른 안정성 해석을 수행하였다. 근궤적법과 시간적분법을 사용하여 주파수영역과 시간영역에서의 서보공탄성 안정성 해석을 수행하였다.

Keywords

References

  1. NOLL, Thomas E. Aeroservoelasticity. 1993.
  2. Sevart, F. D., "Development of Active Flutter Suppression Wind Tunnel Testing Technology," Air Force Flight Dynamics Lab., TR-74-124, Jan. 1975.
  3. Edwards, J. W., "Unsteady Aerodynamic Modeling and Active Aeroelastic Control," Stanford Univ., Stanford, CA, SUDAAR 504, Feb. 1977.
  4. Roger, K. L., "Airplane Math Modeling Methods for Active Control Design," AGARD-CP-228, Aug. 1977
  5. Karpel, Mordechay. "Time-domain aeroservoelastic modeling using weighted unsteady aerodynamic forces." Journal of Guidance, Control, and Dynamics vol. 13, no. 1, pp. 30-37, 1990. https://doi.org/10.2514/3.20514
  6. Version, Z. A. E. R. O. "4.2 Theoretical Manual." ZONA Technology, Scottsdale, AZ. 2000.
  7. Karpel, M., "Size-Reduction Techniques for the Determination of Efficient Aeroservoelastic Models," Academic Press, Advances in Control and Dynamic Systems, vol. 54, pp. 263-295, 1992. https://doi.org/10.1016/B978-0-12-012754-2.50011-X
  8. Hoadley, S.T. and Karpel, M., "Applications of Aeroservoelastic Modeling Using Minimum-State Unsteady Aerodynamic Approximations", Journal of Guidance, Control and Dynamics, vol. 14, No. 6, pp. 1267-1276, 1991. https://doi.org/10.2514/3.20783
  9. Ueda, T., and E. H. Dowell. "A new solution method for lifting surfaces in subsonic flow." AIAA Journal vol. 20, no. 3, pp. 348-355, 1982. https://doi.org/10.2514/3.7916
  10. Bookstein, Fred L. "Principal warps: Thin-plate splines and the decomposition of deformations." IEEE Transactions on pattern analysis and machine intelligence vol. 11, no. 6, pp. 567-585, 1989. https://doi.org/10.1109/34.24792