DOI QR코드

DOI QR Code

Vortex sheddings and Pressure Oscillations in Hybrid Rocket Combustion

하이브리드로켓 연소실의 와류발생과 연소압력 진동

  • Received : 2012.08.01
  • Accepted : 2012.12.29
  • Published : 2013.01.01

Abstract

The similarity in internal flow of solid and hybrid rocket suggests that hybrid rocket combustion can be susceptible to instability due to vortex sheddings and their interaction. This study focuses on the evolution of interaction of vortex generated in pre-chamber with other types of vortex in the combustor and the change of combustion characteristics. Baseline and other results tested with disks show that there are five different frequency bands appeared in spectral domain. These include a frequency with thermal lag of solid fuel, vortex shedding due to obstacles such as forward, backward facing step and wall vortices near surface. The comparison of frequency behavior in the cases with disk 1 and 3 reveals that vortex shedding generated in pre-chamber can interact with other types of vortex shedding at a certain condition. The frequency of Helmholtz mode is one of candidates resulting to a resonance when it was excited by other types of oscillation even if this mode was not discernable in baseline test. This selective mechanism of resonance may explain the reason why non-linear combustion instability occurs in hybrid rocket combustion.

하이브리드 로켓은 고체로켓과 매우 흡사한 내부유동 특성을 가지고 있으므로 와류흘림(vortex shedding)은 하이브리드 로켓에서도 연소안정성에 영향을 미치는 중요한 인자로 판단된다. 본 연구에서는 예연소실에서 와류를 발생시켜 연료 표면와류와의 간섭과 연소특성 변화를 관찰하였다. 기본 형상과 디스크를 장착한 실험 결과, 5개의 주파수 특성이 관찰되었으며 이들은 각각 추진제의 열적지연에 의한 주파수, 디스크, 연료 단면, 후연소실 단면 변화에 의한 와류흘림과 관련된 주파수임을 확인하였다. 특히 디스크 1과 3의 결과를 비교해 보면 디스크 위치에 따라 변화하는 와류흘림이 연소실의 특정 주파수 특성과 상호 간섭하여 공진이 발생하기도 하지만, 또 다른 경우에는 어떠한 간섭도 일어나지 않는 것을 확인하였다. 이러한 선택적 공진현상은 하이브리드 로켓의 비선형 연소안정성 발생을 설명할 수 있는 중요한 메카니즘으로 판단된다.

Keywords

References

  1. F. E. C., Culick, "Unsteady Motions in Combustion Chambers for Propulsion Systems," The Research and Technology Organization of NATO, 2006.
  2. G. A., Flandro, "On Flow Turning," AIAA paper 95-2530, 1995.
  3. R. A. Fiedler, B. Wasistho and M. Brandyberry, "Full 3-D simulation of turbulent flow in the RSRM," AIAA 2006-4587, 2006.
  4. Changjin Lee and Yang Na, "Large Eddy Simulation of Flow Development in a Chamber with Surface Mass Injection," Journal of Propulsion and Power, Vol. 25, No. 1, 2009, pp.51-59. https://doi.org/10.2514/1.34980
  5. Jerome Vetal, Frederic Plourde, and Son Doan-Kim, "Dynamics of an Internal Flow field Driven by Two Hydrodynamic Instabilities," AIAA Journal, Vol. 41, No. 3, 2003.
  6. Jerome Vetal, Frederic Plourde, and Son Doan-Kim, "Amplification of Shear Layer Instability by Vorticity generation at an Injecting Wall," AIAA Journal, Vol. 42, No. 1, 2004.
  7. Chi Cong Nguyen, Frederic Plourde, and Son Doan-Kim, "Analysis of Injecting Wall Inclination on Segmented Solid Rocket Motor Instability," Journal of Propulsion and Power, Vol. 24, No. 2, 2008.
  8. Changjin Lee, "Analysis of Non-Acoustic Combustion Instability of Hybrid Rocket," KSAS Journal, Vol. 29, No. 7, 2001, pp.96-102.
  9. J. F. Largeau and V. Moriniere., "Wall Pressure Fluctuations and Topology in Separated Flows over a Forward-Facing Step," Experiments in Fluids, 2007, pp.21-40.
  10. Bohoon Kim, Yang Na, Changjin Lee, "LES for Turbulent Duct Flow with Surface Mass Injection," KSAS Journal, Vol. 39, No. 3, 2011, pp.232-241. https://doi.org/10.5139/JKSAS.2010.39.3.232
  11. J. J. Miau, T. S. Leu, T. W. Liu, J. H. Chou., "On Vortex Shedding Behind a Circular Disk," Experiments in Fluids, 1997, pp.225-233.

Cited by

  1. Flame Interaction with Shear Layer Flow in the Post Chamber of Hybrid Rocket vol.44, pp.7, 2016, https://doi.org/10.5139/JKSAS.2016.44.7.585
  2. Low frequency Instability in Hybrid Rocket Post-chamber Configuration vol.42, pp.1, 2014, https://doi.org/10.5139/JKSAS.2014.42.1.29