• Title/Summary/Keyword: frequency-based model

Search Result 3,374, Processing Time 0.034 seconds

Free Vibration Analysis of Multi-delaminated Composite Plates (다층간분리된 적층판의 자유진동해석)

  • Taehyo Park;Seokoh Ma;Yunju Byun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.25-32
    • /
    • 2004
  • In this proposed work new finite element model for multi-delaminated plates is proposed. In the current analysis procedures of multi-delaminated plates, plate element based on Mindlin plate theory is used in order to obtain accurate results of out-of-plane displacement of thick plate. And for delaminated region, plate element based on Kirchhoff plate theory is considered. To satisfy the displacement continuity conditions, displacement vector based on Kirchhoff theory is transformed to displacement of transition element. The numerical results show that the effect of delaminations on the modal parameters of delaminated composites plates is dependent not only on the size, the location and the number of the delaminations but also on the mode number and boundary conditions. Kirchhoff based model have higher natural frequency than Mindlin based model and natural frequency of the presented model is closed to Mindlin based model.

  • PDF

Cointegration Analysis with Mixed-Frequency Data of Quarterly GDP and Monthly Coincident Indicators

  • Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.925-932
    • /
    • 2012
  • The article introduces a method to estimate a cointegrated vector autoregressive model, using mixed-frequency data, in terms of a state-space representation of the vector error correction(VECM) of the model. The method directly estimates the parameters of the model, in a state-space form of its VECM representation, using the available data in its mixed-frequency form. Then it allows one to compute in-sample smoothed estimates and out-of-sample forecasts at their high-frequency intervals using the estimated model. The method is applied to a mixed-frequency data set that consists of the quarterly real gross domestic product and three monthly coincident indicators. The result shows that the method produces accurate smoothed and forecasted estimates in comparison to a method based on single-frequency data.

Prestress-Loss Monitoring Technique for Prestressd Concrete Girders using Vibration-based System Identification (진동기반 구조식별을 통한 프리스트레스트 콘크리트 거더의 긴장력 손실 검색 기법)

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.123-132
    • /
    • 2010
  • This paper presents a prestress-loss monitoring technique for prestressed concrete (PSC) girder structures that uses a vibration-based system identification method. First, the theoretical backgrounds of the prestress-loss monitoring technique and the system identification technique are presented. Second, vibration tests are performed on a lab-scaled PSC girder for which the modal parameter was measured for several prestress-force cases. A numerical modal analysis is performed by using an initial finite element (FE) model from the geometric, material, and boundary conditions of the lab-scaled PSC girder. Third, a vibration-based system identification is performed to update the FE model by identifying structural parameters since the natural frequency of the FE model became identical to the experimental results. Finally, the feasibility of the prestress-loss monitoring technique is evaluated for the PSC girder model by using the experimentally measured natural frequency and numerically identified natural frequency for several prestress-force cases.

A Model Reduction and PID Controller Design Via Frequency Transfer Function Synthesis (주파수 전달함수 합성법에 의한 모델축소 및 PID 제어기 설계)

  • Kim, Ju-Sik;Kwang, Myung-Shin;Kim, Jong-Gun;Jeon, Byeong-Seok;Jeong, Su-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • This paper presents a frequency transfer function synthesis for simplifying a high-order model with time delay to a low-order model. A model reduction is based on minimizing the error function weighted by the numerator polynomial of reduced systems. The proposed method provides better low frequency fit and a computer aided algorithm. And in this paper, we present a design method of PID controller for achieving the desired specifications via the reduced model. The proposed method identifies the parameter vector of PID controller from a linear system that develops from rearranging the two dimensional input matrices and output vectors obtained from the frequency bounds.

Nonstationary Frequency Analysis of Hydrologic Extreme Variables Considering of Seasonality and Trend (계절성과 경향성을 고려한 극치수문자료의 비정상성 빈도해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.581-585
    • /
    • 2010
  • This study introduced a Bayesian based frequency analysis in which the statistical trend seasonal analysis for hydrologic extreme series is incorporated. The proposed model employed Gumbel and GEV extreme distribution to characterize extreme events and a fully coupled bayesian frequency model was finally utilized to estimate design rainfalls in Seoul. Posterior distributions of the model parameters in both trend and seasonal analysis were updated through Markov Chain Monte Carlo Simulation mainly utilizing Gibbs sampler. This study proposed a way to make use of nonstationary frequency model for dynamic risk analysis, and showed an increase of hydrologic risk with time varying probability density functions. In addition, full annual cycle of the design rainfall through seasonal model could be applied to annual control such as dam operation, flood control, irrigation water management, and so on. The proposed study showed advantage in assessing statistical significance of parameters associated with trend analysis through statistical inference utilizing derived posterior distributions.

  • PDF

A development of nonstationary rainfall frequency analysis model based on mixture distribution (혼합분포 기반 비정상성 강우 빈도해석 기법 개발)

  • Choi, Hong-Geun;Kwon, Hyun-Han;Park, Moon-Hyung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.895-904
    • /
    • 2019
  • It has been well recognized that extreme rainfall process often features a nonstationary behavior, which may not be effectively modeled within a stationary frequency modeling framework. Moreover, extreme rainfall events are often described by a two (or more)-component mixture distribution which can be attributed to the distinct rainfall patterns associated with summer monsoons and tropical cyclones. In this perspective, this study explores a Mixture Distribution based Nonstationary Frequency (MDNF) model in a changing rainfall patterns within a Bayesian framework. Subsequently, the MDNF model can effectively account for the time-varying moments (e.g. location parameter) of the Gumbel distribution in a two (or more)-component mixture distribution. The performance of the MDNF model was evaluated by various statistical measures, compared with frequency model based on both stationary and nonstationary mixture distributions. A comparison of the results highlighted that the MDNF model substantially improved the overall performance, confirming the assumption that the extreme rainfall patterns might have a distinct nonstationarity.

The Oscillation Frequency of CML-based Multipath Ring Oscillators

  • Song, Sanquan;Kim, Byungsub;Xiong, Wei
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.671-677
    • /
    • 2015
  • A novel phase interpolator (PI) based linear model of multipath ring oscillator (MPRO) is described in this paper. By modeling each delay cell as an ideal summer followed by a single pole RC filter, the oscillation frequency is derived for a 4-stage differential MPRO. It is analytically proved that the oscillation frequency increases with the growth of the forwarding factor ${\alpha}$, which is also confirmed quantitatively through simulation. Based on the proposed model, it is shown that the power to frequency ratio keeps constant as the speed increases. Running at the same speed, a 4-stage MPRO can outperform the corresponding single-stage ring oscillator (SPRO) with 27% power saving, making MPRO with a large forwarding factor ${\alpha}$ an attractive option for lower power applications.

Meta-model-based Design Method for Frequency-domain Performance Reliability Improvement (주파수 영역에서의 성능 신뢰도 향상을 위한 메타 모델을 이용한 설계 방법)

  • Son, Young Kap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.19-26
    • /
    • 2015
  • This paper proposes a design method for improving the frequency-domain performance reliability of dynamic systems with uncertain and degrading components. Discrete frequencies are used in this method as surrogates for the frequency band of interest, and the conformance of the frequency responses to the specification at these frequencies is utilized to model the frequency-domain performance reliability. A meta-model for the frequency responses, an extreme-value event, and the set-theory are integrated to improve the computational efficiency of the reliability estimation. In addition, a sample-based approach is presented to evaluate and optimize the estimated performance reliability. A case study of a vibration absorber system showed that the proposed design method has engineering applications.

Transformer Winding Modeling based on Multi-Conductor Transmission Line Model for Partial Discharge Study

  • Hosseini, Seyed Mohammad Hassan;Baravati, Peyman Rezaei
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.154-161
    • /
    • 2014
  • To study and locate partial discharge(PD) and analyze the transient state of power transformer, there is a need for a high frequency model of transformer winding and calculation of its parameters. Due to the high frequency nature of partial discharge phenomenon, there is a need for an accurate model for this frequency range. To attain this goal, a Multi-Conductor Transmission Line (MTL) model is used in this paper for modeling this transformer winding. In order that the MTL model can properly simulate the transformer behavior within a frequency range it is required that its parameters be accurately calculated. In this paper, all the basic parameters of this model are calculated by the use of Finite Element Method (FEM) for a 20kV winding of a distribution transformer. The comparison of the results obtained from this model with the obtained shape of the waves by the application of PD pulse to the winding in laboratory environment shows the validity and accuracy of this model.

Characterization of high performance CNT-based TSV for high-frequency RF applications

  • Kannan, Sukeshwar;Kim, Bruce;Gupta, Anurag;Noh, Seok-Ho;Li, Li
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.37-49
    • /
    • 2012
  • In this paper, we present modeling and characterization of CNT-based TSVs to be used in high-frequency RF applications. We have developed an integrated model of CNT-based TSVs by incorporating the quantum confinement effects of CNTs with the kinetic inductance phenomenon at high frequencies. Substrate parasitics have been appropriately modeled as a monolithic microwave capacitor with the resonant line technique using a two-polynomial equation. Different parametric variations in the model have been outlined as case studies. Furthermore, electrical performance and signal integrity analysis on different cases have been used to determine the optimized configuration for CNT-based TSVs for high frequency RF applications.