• Title/Summary/Keyword: frequency calibration

Search Result 347, Processing Time 0.025 seconds

Design of a 1.2V 7-bit 800MSPS Folding-Interpolation A/D Converter with Offset Self-Calibration (Offset Self-Calibration 기법을 적용한 1.2V 7-bit 800MSPS Folding-Interpolation A/D 변환기의 설계)

  • Kim, Dae-Yun;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.18-27
    • /
    • 2010
  • In this paper, a 1.2V 7-bit 1GSPS A/D converter with offset self-calibration is proposed. The proposed A/D converter structure is based on the folding-interpolation whose folding rate is 2, interpolation rate is 8. Further, for the purpose of improving the chip performance, an offset self-calibration circuit is used. The offset self-calibration circuit reduce the variation of the offset-voltage,due to process mismatch, parasitic resistor, and parasitic capacitance. The chip has been fabricated with a 1.2V 65nm 1-poly 6-metal CMOS technology. The effective chip area is $0.87mm^2$ and the power dissipates about 110mW at 1.2V power supply. The measured SNDR is about 39.1dB when the input frequency is 250MHz at 800MHz sampling frequency. The measured SNDR is 3dB higher than the same circuit without any calibration.

Self-Calibration of High Frequency Errors of Test Optics by Arbitrary N-step Rotation

  • Kim, Seung-Woo;Rhee, Hyug-Gyo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.115-123
    • /
    • 2000
  • We propose an extended version of multi-step algorithm of self-calibration of interferometric optical testing instruments. The key idea is to take wavefront measurements with near equal steps in that a slight angular offset is intentionally provided in part rotation. This generalized algorithm adopts least squares technique to determine the true azimuthal positions of part rotation and consequently eliminates calibration errors caused by rotation inaccuracy. In addition, the required numbers of part rotation is greatly reduced when higher order spatial frequency terms are of particular importance.

  • PDF

Resistivity and Calibration Error Estimations for Small-Loop Electromagnetic Method

  • Sasaki, Yutaka;Son, Jeong-Sul;Kim, Chang-Ryol;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.167-172
    • /
    • 2007
  • The frequency-domain small-loop electromagnetic (EM) instruments are increasingly used for shallow environmental and geotechnical surveys because of their portability and speed. However, it is well known that the data quality is generally so poor that quantitative interpretation of the data is not justified in many cases. We present an inversion method that allows the correction for the calibration errors and also constructs multidimensional resistivity models. The key point in this method is that the data are collected at least at two different heights. The forward modeling used in the inversion is based on an efficient 3-D finite-difference method, and its solution was checked against 2-D finite-element solution. The synthetic and real data examples demonstrate that the joint inversion recovers reliable resistivity models from multi-frequency data severely contaminated by the calibration errors.

  • PDF

Primary vibration calibration by laser interferometry (레이저 간섭계를 이용한 진동 가속도계의 절대교정)

  • 이두희;이용봉;전병수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1356-1360
    • /
    • 2001
  • A number of calibration methods are described in ISO 16063 (revision of ISO 5347) and they may be used for special purposes. However, the use of a laser interferometer is recommended for primary calibration. This paper introduces the primary vibration calibration by measuring displacement amplitude and frequency using laser interferometry.

  • PDF

A Study on RF Calibration Method of Next Generation Mobile Communication System (차세대 이동통신 시스템의 RF Calibration 기법에 관한연구)

  • Kim, Wan-Tae;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.859-864
    • /
    • 2010
  • In the next generation system, a study on realization of Multi-Core system is in progress for applying it in multi service network. Therefore some mobile systems are expected to be appeared. These systems can support WiBro, WCDMA, CDMA, etc with single terminal. These systems have to support various FA using broadband frequency and hand over to other service network. Especially, in the telecommunication system composed of cell, the transmit power can be interference at adjacent system, has effect on system channel capacity and cell size. In this paper, we improve the unstable transmit power caused by unsettled system operation, propose the RF(Radio Frequency) Calibration method which can use the transmit power stably even during hand over between heterogeneous networks causing unstable power change. Also we used proposed method and analysed used electricity of system during hand over between heterogeneous networks.

KSRBL Data Calibration and Note for Users

  • Bong, Su-Chan;Park, Sung-Hong;Hwangbo, Jung-Eun;Park, Young-Deuk;Lee, Dae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.91.2-91.2
    • /
    • 2013
  • The Korean Solar Radio Burst Locator (KSRBL) is a solar radio spectrograph observing the frequency range between 0.245-18 GHz with the capability of locating the wideband gyrosynchrotron bursts. Its calibration process consists of antenna calibration, flux calibration, and demodulation. Antenna calibration is to determine the position, the width, and the peak value of the beam, flux calibration is to determine the conversion factor between the measured unit to the Solar Flux Unit (SFU), and demodulation is to determine the burst position and remove the modulation pattern. We introduce the current calibration software and some information that potential users may concern.

  • PDF

A Study on the Measurement of Volumetric Water Content Using WCR in Final Cover Layer of Landfill (Water Content Reflectometer(WCR)을 이용한 매립지반 최종 복토층의 체적 함수비 측정에 관한 연구)

  • Kim Kyung-Chul;Hwang Koou-Ho;Lee Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.147-154
    • /
    • 2005
  • This study deals with the calibration of low-frequency water content reflectometer for measuring the volumetric water content of soils in landfill final cover layer, and the validity of calibrations was evaluated by electrical conductivity and index properties of the soils. Linear calibrations concerning volumetric water content to WCR period provided good agreement with the data. Analysis of the calibration data indicates that the slope of the calibration decreases as the electrical conductivity of the soil increases. Lower slopes correspond to soils with greater clay content, organic content, liquid limit, and plasticity index, which typically have higher electrical conductivity. It could be well explained that WCR can operate in a lower frequency range.

In Orbit Radiometric Calibration Tests of COMS MI Infrared Channels

  • Jin, Kyoung-Wook;Seo, Seok-Bae
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.369-377
    • /
    • 2011
  • Since well-calibrated satellite data is critical for their applications, calibration and validation of COMS science data was one of the key activities during the IOT. COMS MI radiometric calibration process was divided into two phases according to the out-gassing of the sensor: calibrations of the visible (VI) and infrared (IR) channels. Different from the VIS calibration, the calibration steps for the IR channels followed additional processes to secure their radiometric performances. Primary calibration steps of the IR were scan mirror emissivity correction, midnight effect compensation, slope averaging and 1/f noise compensation after a nominal calibration. First, the scan mirror emissivity correction was conducted to compensate the variability of the scan mirror emissivity driven by the coating material on the scan mirror. Second, the midnight effect correction was performed to remove unreasonable high spikes of the slope values caused by the excessive radiative sources during the local midnight. After these steps, the residual (difference between the previous slope and the given slope) was filtered by a smoothing routine to eliminate the remnant random noises. The 1/f noise compensation was also carried out to filter out the lower frequency noises caused from the electronics in the Imager. With through calibration processes during the entire IOT period, the calibrated IR data showed excellent performances.

Monopulse Slope Calibration in Frequency Agile Noncoherent Monopulse System (주파수 가변 비동기 모노펄스 시스템의 모노펄스 기울기 교정)

  • Kim, So-Su;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1299-1308
    • /
    • 2007
  • In this paper, we propose the calibration method of monopulse slope to minimize the variation of angle estimate in frequency agile noncoherent monopulse system. We analyze the monopulse slope characteristics of antenna and RF receiver including the phase and gain imbalances of each receiving channel and present the calibration method to minimize the phase and gain imbalances of RF receiver channels including antenna. In addition, we present the calibration method using channel switching to minimize the gain imbalance of IF receiver channels. The measured average monopulse slope within the frequency bandwidth is -0.96, the maximum variation of angle estimate is similar to theoretical value, $0.15^{\circ}$ at ${\pm}2^{\circ}$ azimuth and $0.03^{\circ}$ at $0^{\circ}$ azimuth.

Design of a 7-bit 2GSPS Folding/Interpolation A/D Converter with a Self-Calibrated Vector Generator (자체보정 벡터 발생기를 이용한 7-bit 2GSPS A/D Converter의 설계)

  • Kim, Seung-Hun;Kim, Dae-Yun;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.4
    • /
    • pp.14-23
    • /
    • 2011
  • In this paper, a 7-bit 2GSPS folding/interpolation A/D Converter(ADC) with a Self-Calibrated Vector Generator is proposed. The ADC structure is based on a folding/interpolation architecture whose folding/interpolation rate is 4 and 8, respectively. A cascaded preprocessing block is not only used in order to drive the high input signal frequency, but the resistive interpolation is also used to reduce the power consumption. Based on a novel self-calibrated vector generator, further, offset errors due to device mismatch, parasitic resistors. and parasitic capacitance can be reduced. The chip has been fabricated with a 1.2V 0.13um 1-poly 7-metal CMOS technology. The effective chip area including the calibration circuit is 2.5$mm^2$. SNDR is about 39.49dB when the input frequency is 9MHz at 2GHz sampling frequency. The SNDR is improved by 3dB with the calibration circuit.