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ABSTRACT

We propose an extended version of multi-step algorithm of selfcalibration of interferometic optical testing

insttuments. The key idea is to take wavefront measurements with near equal steps in that a slight angular offset is

intentionally provided in part rotation, This peneralized algorithm adopts least squares technique 1o determine the true

azimuthal posilions of part rolation and consequently eliminates calibration errors caused by rotation inaccuracy. In

addition, the required number of part rotation is greatly rcduced when higher order spatinl frequency lerms are of

particular importance.
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1. Introduction

Sell-calibration in oplical testing aims (o remove the
systemalic errors of the instrament without relying upon
externally calibrated arlifacts. This approach of ahsolute
test becomes important when no cahbration standards
with suflicienily quantified accuracy are available
becausc the required uncertainty in the measurement 1s
of the same order as the instrument crrors. Ever since the
reversal principle of three-flat test giving one ine profile
from three setups was first known., a body of practical
techniques has been evolved for absolute test of flats and
spherical surfaces [1-3]. The majority of work has
attempied to obtain complete full aperture solutions in
the Twyman-Green and Fizeau 1nlerferometers by
extending the classical three-llat test. Examples are the
so-called cal’s eye test [4-7], three-sphericity test [8],
transparent lhree-flat test [9-117. and skip-flat or Ritchey-
Comumon test [12.13]. The cat’s eye test works with only
three selups elaborately conligured for spherical surfaces
having an cxternally accessible focus. The other teses
rotate one of the parts stepping oui the line measurement
principle ol the three-flal test over full aperiure area.
There was ancther approach of adopting well-defined

medel funclions such as the Zemike polynomials or
Fourier series to approximale surface crrors [14-19]. The
use of model functions offeis a general way of remoeving
syslemnatic ertors with a muninmm number of part
itotatjons, being particularly useful when lower-order
errors of spherical, coma and astigmatism aberrations are
of primary interest. It also permoils improving calibration
through
measured wavefronts [20-23].

accuracy simple arithmetic averaging of

Our discussion in this paper particularly concerns the
multi-siep averaging method proposed by Evans and
Kestner [20]. The underlying principle is averaging
multiple wavefronis sampled while rolating the part to N
equally spaced azitmuthal positions about the opftical axis
to identify rotationally variant asymmeiric wavefront
errors. This method works wcll with only four or six
conseculive part rotafions in practice, but has a drawback
of [lailing to provide a complete solution since Lhe
rotationally  invariant and rotationally  harmonic
wavcfront components are nol recogmzable by part
rotation. Il highcr-order wavelront irregularities are
vequired for rigorous 1nspection of the part, the number
ol part rotations should consequently be increascd to
reduce the partial loss of the rotationally unrecogmzable

wavelront errors. However, when a targe number of part
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rotations is implemented, a high precision is required in
part rotation becauose higher order wavefront components
are particularly sensitive to rotation errors. This problem
could diminish with aids of an accurale azimuthal angle
division device, but a more effective way would be
improving the current algorithm not to be confined by
the equal spacing requircment. Motivated by this, we
propose an extended version of the mulli-siep averaging
algorithm, which permits part rotation to be made at
arbitrary azimuthal positions. This generalized algorithm
eliminates calibration errors caused by rolation
maccuracy and also offers a great advantage of reducing
the required number of part rotations when higher order
spatial frequency terms are of particular importance. The
latter benefit is obtained by imposing a small amount of
intentional offset in the azimuthal posilions during part

Totation.
2. Multi-step Averaging

The resulting wavefront W from any interfercmetric
optical testing is composed of two parlial wavelront
components of

W=T+P (D

where T is the systematic error of the nstrument
including the reference surface, while P is the surface of
the part to be measured. The above simple lincar
supcrposition of the two wavefronis 1s not strictly troe
but generally valid if they are of small orders as usnal in
most cases of optical shop testing. To separate the two
wavefronts from each other. £ is rotated aboul the optical
axis by some physical means while 7 remains stationary.
Then, let W; be the wavefront of W sampled when P 1s
stationed at an azimuthal position of ¢, . The subscLipt j
indicates the rotation index ranging from 0 ta ¥-1, where
tp = 0 and ¥ is the tolal mumber of part rotations, 7
undergomg no changes vanishes in the difference
wavefront 0, . which 15 intermediately defined as the
subtraction of

D, =W -W,=(T+P)-(T+F)=P —F,.
(2)

Now, with the intention of reconsiruct &, from D,

116

the expression of Zernike polynomials is adopted to
decompose Py such as

Py = P(r.8)= > R (mle, cos(kd) + d,, sin(k6)]
I3
3

where 1 and 8 are the normalized radial and angular
coordinates: Rkl(r) the radial polynomials; clk and dik
the coefficients of the angular terms. In line with PO
expressed in Equation (3), the rotated wavefront Pj is
also described as

Pf = P(r,8+a})
=D R{(rie, cos(kB+ o )+ dy sin(kB+ax )]
i

= > R (ric, cos(k8) + d, sin(k6)]

)

where ¢, = ¢, cos(ka,)+d, sin(ka )
and &, = d, cos(ka,)— ¢, sinfko:, ) .

Equations (3) and (4) indicate that the Zemike
coefficients ¢y and d; comply with the well-known
transformation rule of vector rotation when they are
regarded as the two orihogonal magnitude components of
a two-dimensional veclor. Then, substituting both the
Zermke cxpressions of Py and P, info Equation (2) allows
the coefficients of the difference wavelront D, to be
obtained such as Acy = ¢y — oy and Ady = dy — 4, |
Therefore, once 2, have actually been sampled and [itted
1o salve for Acy and Ady, the coefficients of the otiginal
parl wavefront Py are readily defermined as

Ad,, sinfko. ) |
CU( :l A " +M
2 (1 —cos(ka )} ]
Ac, sinfko. ) |
and d,, 1 Ad“——ﬁg . (3)
2 (1-cos(ka, )) ]

In faci, this result was {irst proposed by Parks [14]
and Fnitz [16]. This is hereafler relerred to as the two-
step algorithm as it is capable of providing a solution
with only two measwements of wavelronts, 1.c., }=0 and
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1. The algorithm 18 convenient 1o implement with merely
one part rolation of P, but the solution is not complete
smee the denominator 1-cos{ko) becomes null for certam
angular orders of k. One case for the void situation is
when k=0, implying thal all the rotationally invariant
components of PO are not recovered. The other includes
all the cases when k (5 integer multiples of 2n/c, which
means that even rotationally harmonic components are
partially lost. It 15 theoretically desivable to take the
Lotation angle as small as possible 1o increase the least
mleger multiple of 2r/a , but too small o tends 1o
provoke computational inaccuracy especially for lower
orders of k [21].

Now we proceed to the mulii-step algorithm that
takes multiple part rotations o give the arithmetic mean
of the measured wavelronts as the solution. To explain its
underlying principles, by substituting Equations (3) and
(4) mto Equation (2), the difference wavefront is
rearranged in the {form of

D, = Pjlcostko )~ 1]+ B sin(ka. ) Q)

~

where F, is a conjugatec wavefront of Py, i.e.,

B =" R (#)id, cos(kd) — ¢, sin(k0)]
i

Then, summing vp all the difference wavefronts

leads to the expression of

Nl N_l Vel
ZDJ - P()[Zcos(ka J-NI+ PGZsin(_kaj) .
J=0 =0 1=t

{7

The key idea of the multi-step algoiithm is to take
the azimuthal angles to be equally spaced such as
a=27/(N-1}. with the intention ol making the most of
the invariant properties of the sine and cosine harmonic

[mctions of

-1
> sin(ka,) =0 forall £, and )
J=t

-1
Z cos(ke, ) = for k not being integer multiples of
J=0

-1
Zcos(kajj =N, (9
=l

N, otherwise

Thus, if both the sums of sine and cosine terms are
zero, Equation (7) leads to the [(inal form of the mulli-
slep algorithm of

N1

L
B=—>YD . (10)
w2

This result was {irst proposed by Evans and Kestner
[20], and named the multi-step averaging algorithm. In
comparison with the previous two-step algorithm, this
arithmetic algorithm requires less computation since the
Zernike it of D, is not necessary. Further, averaging of
multiple wavelronts nproves calibration accuracy
bacanse any sampling error in a single waveiront is
averaged out However, the problem of partial wavelront
loss still remains; the rotationally invariant components
of k=0 as well as the rotationally hatmonic components
of k being integer multiples of N arc not recoverad as
implizd 1n Equation (9). For gencral optical tesfing when
low-order spherical, coma and astigmatism abenations
are of intercsl, four or six part rotations are usually
sufficient [20. 22]. When higher-frequency wavelront
irregularitics of the part are lo be rgorously examined. NV
should be increased with a large number of subsequent
wavelront measurements. The number of part rotations
may Dbe reduced by adapting the software rolation
lechuique [23], which takes only two actual wavefronts
with part rotation and then synthetically generales other
wavelronts by transforming the two real wavefronts in
consideration of rotation geometry. In this case, however,
any sampling crrors cncountered in the two mieasured
wavelronts due fo rotation inaccuracy and electrical
noise significantly deteriorate the final calibration results
with no averaging effects. More practical way of
redueing the number of part rotations while maintaining
averaging eflects may be to split ¥ into two numbers
such as N = N - Nao. Then iwo separale sequences of
multi-step averaging measurements are performed; one
with N, rotations and the other with &, rotations. If Ny
and N, arc incommenswrate. the errors in the lest part can
be determuned up 1o the order of N, times N; by fitting
the measurement results to Zernike polynomials. For
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example, if N is required to be 72 for an angular
bandwidth of 5°. &, and N are determined as 8 and 9
respectively. This consequently reduces the tolal number
of rotations from 72 to 17.

3. Least Squares Algorithm

If one adopls the well known shifting theorem of
Fourier transform, it becomes clear that partial wavefront
loss is unavoidable in both the two-step and multi-step
averaging algonthms. The difference wavefront of
Equation (2) is transformed into the spectral domain of
the angular coordinate such as

3D, }=3{PO+o,)- PO}

(11)
= S{P(®)-{expl-ikai,1-1}

The notion J{.} represents the Fourier translorm.
The part wavefront P& is then obtained as

1

PH) =5
{expl-ika, | -1}

D)) a2)

where ' represents the inverse Fourier transform. If
ko, = 27m for n = 0,1,2, ..., the above equation 18 no
longer valid since the denominator of the right hand side

becomes nuil, 1.e.,

exp(—i2nn] -1 = {cos2mn—sin2mn} -1={0-1}-1=0

This exactly comesponds to the void sitzations of the
two-step algorithm, in which all the angular orders of k =
27 n/w; are lost. Similar discussions apply to the multi-
step averaging algorthm, for which the part wavefront
FP(&) is derived as

1 N-1

- S{ZDJ 1+,
O expl-iko,1- N} @

J=0

Py =3

(13)
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In this case. if k is either zero or integer multiples of
N, the solution of P(#h is not determined since the
denominator becomes null. This is readily veified by
utilizing the invariant properties of sine and cosine
harmonic Functions explained in Equations {8) and &)}
such as

A=l
> exp[-ike,]- N
J=(

-1

-]
= Zcoskal —Zsin k(xj -N.
=0 =(1

=N-0-N=0

Fram the abeve discussions, il may be deduced that
one way of avoiding the void situations in the multi-step
method 15 to select the rotation angles a, deliberately not
10 be equally spaced so thal the void condition of the
denominator 15 weakened. This approach provides
another advantage of reducing the total number of part
rotation can be reduced for a given angular bandwidth of
measurement. For example, il was explained in the
previpus section that a tolal of 17 parnt rotalions are
required for an angunlar bandwidth of 5°. The same
calibration results are produced with only six
measurements if ¢, are chosen as 0°, 63°, 1259, 175°,
245°, and 295°, where an ollset of 5° is intentionally
added or subtracted tespectively to the six equally spaced
angles around one revolution, In modifying the current
multi-step averaging algorithm not to be conlined by the
equal spacing requirement, it 15 necessary to identify the
true values of a, directly from measured wavefronts, The
reason is that in performing the multi-step algorithm,
many practical difficulties arise in maintaining a high
precision in parl rotation especially when a large number
of rotations arc required with an mtentional offset.
Consequently, the key idea of the newly proposed
algorithm is that the rotated angles o, are freated as
additional unknowns together with the cocfficients o
and d;; . Then thewr actual values are determined from the
measured wavefronts I, using least-squares technigue.

The

decomposing the part wavefront in terms of the angular

new  multi-siep  algorithm  beings  with



Seung-Woo Kun and Hyug-Gyo Riwee - International Jewrnal of the KSPE, Vel. !, No. 2

order is & such as P(r',ﬂ):ZPi‘{r,G) , where
3

P*(r,0) is the partial sum of all the Zernike radial

polynomial components whose angular order is k. Letting
L(k) be the maximum radial order to be considercd for
each k, the partial sum 1s made up in detail such as

205!

PH(r.8) =) R ()lcy coskl) + d, sin(kB)]
H

Lky
= EIZ}(r.6)
!

(14)

L r [CDS k
where Z; (v,8)= R (r)lsin (k8 and &,

denotes another form of Zernike coefficients. Similarly.
the sampled wavelront difference D, is also cxpressed as

K
D, (r,0)= > D*(r,0) in whh
k=l
DHr,0)
= B} (r,0)costker ) 1] + B (. 8)sintka )

Lik)

= D (&4} (r.®[costka, )~ 1] + L Z{ (r,B)sin(kar, )}
!

Lik)

EZngf(r,e)
!
(15)

For convenience, the subscript i is newly introduced
Leky

to replace the nolation (r; &) such as le = ZX ,j‘ Zf .
i
Now, let f),j be the actually measured value of D,f .
Then computation for Zernike [itting of ﬁfj‘ and

subsequent partial summing ot the coefficients with same

order of & allows X ,ﬁ of Equation (13) to be computed
as X 1? . In doing that, if the values of « , are not
comectly estimated, the computed values of X ; never
equal the e values of X f; . The computational errors in

-~

X f; are arranged in the form of two cost functions.

119

which are defined for each & such as

N-]
E =Y (X[ -X[)
J=a

NI

{F,g[[cos(ku,f) —1]+ B sin(ka ) 7}2; } !

(16)
and
Lk .
EF =X (x}-XY
!
LH\J[ - N 2
= > &k [cos(ka,) ~ 11+ & sintka ) - X ]
i
(17

The former Ef represents the partial error sum of
induced in the radial coefficients of Zemnike fitting by
inaccurate estimation of rotation angles o ;- On the
other hand, the latter Ef‘ 15 the partial sum of errors
resulting in the j-th wavefront. The cost functions should
be minimized to determine the true values of the
unknowns  of iér R E{,‘, and o, . The necessary
conditions are derived as

oEf GEf  GE,  @EY
OEL,  OBY  dcosth,) dsin(ka,)

(18)

The above conditions are atranged m the form of
matrix equations such as

Nl

N-1
Z[cos(kctk,)—llz Zsm(kuJ Jeos(ka )—1] {
=0 =0

Zsin(kctj)[cos(ka})——l] Zsing(kaf)

J=0 =l
Nl
~
L
2%
J=0
Nl

3 X} sin(kor,)

J=

[cos{ka ) — 1]

=}

(19)

]

A

g

a

i

i

ﬂ
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(a) (b)

(c) (d)

Fig. 1 Comparison of simulation results when irue values of o, arc not equally spaced msiakenly as 0°, 61°, 121°, 179°.
241°, 299°. (a} Original wavelront generated for simalation with all the Zermke cocfficients being 0. 12 for k=1-5
(b} Fringe map of the original wavefront (P-V: 1.118um and 1ms: 8.1102). {c) The wavefront error extracled by

the 6-step averaging algorithm (P-V: 0.077um and rms: ¢ 001A). (d) The wavefront error computed by the least-
squares algorithm (P-V; 0.001um and rms value, 3x107).

120
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ﬁ (b}

Fig. 2 Suppression capabilities of high frequency components when o, are inlentionally taken as 0, 61°, 1219, 179%, 241°,
289° (a) Original wavelroni gencraled [or simulation with all the Zernike coeflicients being 0.1 for £=1-8 (P-V:
1.763pm and vms: 0.110%). {b) The wavefront error extracled by the 6-slep averaging algorithm (P-V: 0.409um
and rms; 0.0014). (c) The waveiront error compuled by the least-squares algorithm (P-V: 0.012pum and rms value:
2x10772).
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Lik)

Ee ) &L

2 0 Z :n&-u.‘ CDS(kC(j)
Ly wik =~ || s1n{kaL )
Z‘?U.’EOI Z[Qli;z]h B }
Lik)

Z{X,, £, +IEL T}
L[k)

oy
Z{Xb =0
{

Lk
+ E.y(n &uz }

(20)

No analytical solutions are found for the above

simultaneous  eguations. thus  iterative numerical
technique is adapted. For each k. an initial guess is made
for the azimuthal positions @, so that Eg, and Eg[ are
computed from Equation (19). Then by using computed
values of &) and E&. » the azimuthal positions o, are
upgraded [rom Equation (20). Next step is go back to
Equation {19) with the new values of o, and repeat the
computation of im and §011 and @, is adjusted again.
The iterative computation between Equatlons (19) and
(20} continues until the change of o ; converges into a
predefined small value. Total computation time is

influenced by the mumber of terms of Zernike
polynomials in consideration, the number of rotation A,
and the . Finaily, with the

converged values of ﬁgl . the part wavefront P, is

mitiaily guess of o,

reconstructed.

4. Simulation and Discussion

The proposed algorithm, hereafter referred to as the
least squares algorithm, has been tested to verify its
advantages and usefulness through computer sinmilation.
the
performances of the multi-step averaging and least

Figure 1 describes a case study in  which

squares algorithms are compared when there are
significant amounts of azimuthal position errors in part
rotations, Figure 1{a) illustrates the instrument error to he
elininated while the part wavelront is assumed perfectly
flat, The mumber of steps was taken as 6 equally for both
the algorithms and the maximum Zernike order of
Interest was k=5, Comparison reveals that the least

squares algorithm effectively remmoves almost all the

[

instrument error although part rotations are not
accuralely induced as intended. On the other hand, the
multi-step averaging algorithm is lumiled 1n restoring the
part wavefront especially around the circomlercnce of
the measured area.

Figure 2 describes another case in which higher order
instrument errors are dominant in the range of £ = 6 to 8
as shown in (a). If the number of part rotation is taken as
6, the multi-step averaging algorithm fails to remove the
P

(b). On the other hand, the least squares algorithm

angular harmonic error components as illustrated 1n

suppresses the higher order instrument errors even with
the same nomber of part rotations, demonsiratimg that
lgher order swface irregulariiies of the part are
data  for

examined accurately. Detailed numerical

comparison are listed in the figure.
5. Conclusions

Qur intention in this paper is to improve the multi-
step averaging method wilth a particular attention of
the
The least squares algorilhm

effective  separation  of rotationally  harmonte
wavelTont components.
proposed in this paper is not confined by the equal
spacing requirement, permitting part rotations 1o bc made
This

algorithm eliminates calibration errors caused by rotation

al  arbitrary azimuothal positions. generalized
inaccuracy and also olfers a great advanlage of reducing
the required number of part rotations drastically when
higher order spalial frequency terms are of particular
importance. The latter benelit 15 obtained by imposing a
predeternuned small amount of intentional offset 1 the

azimuthal positions during part rotations,
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