• Title/Summary/Keyword: free-field boundary condition

Search Result 65, Processing Time 0.029 seconds

A New Method for Coronal Force-Free Field Computation That Exactly Implements the Boundary Normal Current Density Condition

  • Yi, Sibaek;Jun, Hongdal;Lee, Junggi;Choe, G.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.71.3-71.3
    • /
    • 2019
  • Previously we developed a method of coronal force-free field construction using vector potentials. In this method, the boundary normal component of the vector potential should be adjusted at every iteration step to implement the boundary normal current density, which is provided by observations. The method was a variational method in the sense that the excessive kinetic energy is removed from the system at every iteration step. The boundary condition imposing the normal current density, however, is not compatible with the variational procedure seeking for the minimum energy state, which is employed by most force-free field solvers currently being used. To resolve this problem, we have developed a totally new method of force-free field construction. Our new method uses a unique magnetic field description using two scalar functions. Our procedure is non-variational and can impose the boundary normal current density exactly. We have tested the new force-free solver for standard Low & Lou fields and Titov-Demoulin flux ropes. Our code excels others in both examples, especially in Titov-Demoulin flux ropes, for which most codes available now yield poor results. Application to a real active region will also be presented.

  • PDF

CONVERGENCE ANALYSIS ON GIBOU-MIN METHOD FOR THE SCALAR FIELD IN HODGE-HELMHOLTZ DECOMPOSITION

  • Min, Chohong;Yoon, Gangjoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.305-316
    • /
    • 2014
  • The Hodge-Helmholtz decomposition splits a vector field into the unique sum of a divergence-free vector field (solenoidal part) and a gradient field (irrotational part). In a bounded domain, a boundary condition needs to be supplied to the decomposition. The decomposition with the non-penetration boundary condition is equivalent to solving the Poisson equation with the Neumann boundary condition. The Gibou-Min method is an application of the Poisson solver by Purvis and Burkhalter to the decomposition. Using the $L^2$-orthogonality between the error vector and the consistency, the convergence for approximating the divergence-free vector field was recently proved to be $O(h^{1.5})$ with step size h. In this work, we analyze the convergence of the irrotattional in the decomposition. To the end, we introduce a discrete version of the Poincare inequality, which leads to a proof of the O(h) convergence for the scalar variable of the gradient field in a domain with general intersection property.

Electromagnetic Wave Scattering from Multilayered Circular Cylinder : OSRC Approach (다층고조를 갖는 원형 실린더에 의한 전자파 산란 : OSRC 방법)

  • 이화춘;이대형;최병하
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.38-44
    • /
    • 1995
  • The scattered electric field from a multilayered circular dielectric cylinder is caculated. Approximate boundary condition used in on-surface radiation boundary condition(OSRC) method has been applied to all the boundary surface of N-layered dielectric cylinder. It was assumed that scattered electric field at inner boundary surface in one region transmitted to the adjacent region at outer boundary surface. In the whole region, the unknown coefficients of electric field are acquired by the given incident electric field with ease. Electric field distribution at each boundary surface and the scattered electric field in free space are taken with the calculated unknown coefficients. the results obtainted were compared with those results that were used by regular surface boundary condition.

  • PDF

CONFORMAL FIELD THEORY OF DIPOLAR SLE(4) WITH MIXED BOUNDARY CONDITION

  • Kang, Nam-Gyu
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.899-916
    • /
    • 2013
  • We develop a version of dipolar conformal field theory in a simply connected domain with the Dirichlet-Neumann boundary condition and central charge one. We prove that all correlation functions of the fields in the OPE family of Gaussian free field with a certain boundary value are martingale-observables for dipolar SLE(4).

On the Method of Rankine Source Distribution for Free Surface Flow Problem: Radiation Condition and Influence of Finite Distribution (자유표면문제해석(자유표면문제해석)을 위한 Rankine용출점(湧出點) 분포법(分布法) -방사조건(放射條件)과 유한분포(有限分布)의 영향-)

  • Chang-Sup,Lee;Seung-Il,Yang;Chang-Gu,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.2
    • /
    • pp.13-18
    • /
    • 1982
  • The method of Rankine source distribution is emerging as a powerful yet simple alternative for the solution of complicated free surface problems. But it has been uncertain whether the radiation condition could be satisfied exactly by distributing the simple sources on the free surface only. In this paper, it is proved rigorously that the Rankine sources, whose intensities are varying sinusoidally along the axis satisfying the free surface boundary condition, generate the radiation waves both in the infinite and finite-depth flows. A formula is derived to give the upper and lower bounds of the errors in the induced velocity computation that will be introduced by truncating the extent of source distribution on the free surface. Since the truncation is inevitable in the numerical analysis, this formula may be used as a criterion to limit the position of the field points, where velocity computation is made, away from the truncation boundary. A typical analysis shows that the maximum error will be 3.4 percent of the exact induced velocity when the field point is on the free surface two wave lengths away from the truncation boundary.

  • PDF

How to Impose the Boundary Conditions Operatively in Force-Free Field Solvers

  • Choe, Gwang Son;Yi, Sibaek;Jun, Hongdal
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.69.2-69.2
    • /
    • 2019
  • To construct a coronal force-free magnetic field, we must impose the boundary normal current density (or three components of magnetic field) as well as the boundary normal field at the photosphere as boundary conditions. The only method that is known to implement these boundary conditions exactly is the method devised by Grad and Rubin (1958). However, the Grad-Rubin method and all its variations (including the fluxon method) suffer from convergence problems. The magnetofrictional method and its variations are more robust than the Grad-Rubin method in that they at least produce a certain solution irrespective of whether the global solution is compatible with the imposed boundary conditions. More than often, the influence of the boundary conditions does not reach beyond one or two grid planes next to the boundary. We have found that the 2D solenoidal gauge condition for vector potentials allows us to implement the required boundary conditions easily and effectively. The 2D solenoidal condition is translated into one scalar function. Thus, we need two scalar functions to describe the magnetic field. This description is quite similar to the Chandrasekhar-Kendall representation, but there is a significant difference between them. In the latter, the toroidal field has both Laplacian and divergence terms while in ours, it has only a 2D Laplacian term. The toroidal current density is also expressed by a 2D Laplacian. Thus, the implementation of boundary normal field and current are straightforward and their effect can permeate through the whole computational domain. In this paper, we will give detailed math involved in this formulation and discuss possible lateral and top boundary conditions and their meanings.

  • PDF

Effects of Boundary Conditions on Redevelopment of the Boundary Layer in a Backward-Facing Step Flow (후향단유동내 경계층의 재발달에 미치는 경계조건의 영향)

  • Kim, Dong-Il;Lee, Moon-J.;Chun, Chung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.506-511
    • /
    • 2001
  • This paper presents how redevelopment of the boundary layer in a backward-facing step flow is affected by boundary conditions imposed on velocity at the inlet, top and exit of the flow. A two-dimensional, laminar, incompressible flow over a backward-facing step with an open top boundary has been computed by using numerical methods of second-order time and spatial accuracy and a fractional-step method that guarantees a divergence-free velocity field at all time. The inlet velocity profile above the step is of Blasius type. Along the top boundary, shear-tree and Dirichlet conditions on the streamwise velocity were considered and at the exit fully-developed and convective boundary conditions were examined. (The vertical velocity at all boundaries were assumed to be zero explicitly or implicitly.) From the computed flow fields, the reattachment on the bottom side of shear layer separated from the tip of the step and succeeding redevelopment of the boundary layer were investigated.

  • PDF

A Study on the Far-Field Boundary Condition of Tightly Coupled CFD/FreeWake Method in Hover (로터 제자리비행에 적용된 CFD/FreeWake 연계방법의 원거리 경계조건에 대한 연구)

  • Wie, Seong-Yong;Lee, Jae-Hun;Kwon, Jang-Hyuk;Lee, Duck-Joo;Chung, Ki-Hoon;Kim, Seung-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.957-963
    • /
    • 2007
  • this study, helicopter rotor flow is simulated by using a tightly coupled CFD/FreeWake method to describe wake characteristics and to calculate the flow field and rotor aerodynamics. In this tightly coupled CFD/FreeWake method, freewake model provides the boundary condition required in the CFD calculation and CFD provides the pressure distribution on blade surface used in feewake generation. To show the advantage of this method, the pressure distributions on blade surface of a hovering 2-bladed rotor are compared with other numerical methods. This tightly coupled CFD/FreeWake method shows good accuracy in the predicted results and efficient computation time.

An Application of the Localized Finite Element Method to Two-dimensional Free Surface Wave Problems (2차원 자유표면파 문제에서의 국소 유한요소법의 응용)

  • Hyun-Kwon,Kil;K.J.,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.3
    • /
    • pp.9-18
    • /
    • 1985
  • The numerical calculation for solving boundary-value problem related to potential flows with a free surface is carried out by application of the localized finite element method. Only forced motion of 2-D body in infinitely deep fluid is considered, although this schemes is equally applicable to any first order time-harmonic problems of similar nature. The infinite domain of the fluid is separated into the inner flow field and the outer flow field with common inter-surface boundary. The finite element method is applied to obtain the solution in the inner flow field and the Green functions are utilized to represent the solution in the outer flow field. At the inter-surface boundary, the continuity of the value of potential and the normal derivative of the potential(i.e. matching condition) is conserved. The present method has better computational efficiency than the previous LFEM and the integral equation method of Frank. This enhanced computational efficiency is presumably due to the fact that the present method gives a symmetric coefficient matrix and requires less computational time in calculating the influence coefficient matrix of Green function than the integral equation method. And the irregular frequency desen't exist because the uniqueness of the solution is assured by the such that the exact free surface condition is satisfied on the boundary of the localized finite element region(i.e. inner region). As an example of the above method, the hydrodynamic forces for the circular cylinder and the rectangular cylinders are calculated. In the computed results, the small number of singularity distribution segments($3{\sim}6$) give good result relative to Ursell's and Vugts'.

  • PDF

Analysis of rarefied compressible boundary layers in transition regime (천이영역의 희박기체 압축성 경계층 해석)

  • Choe, Seo-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.