1 |
M. Bauer, D. Bernard, and J. Houdayer, Dipolar stochastic Loewner evolutions, J. Stat. Mech. Theory Exp. (2005), no. 3, P03001, 18 pp. (electronic).
|
2 |
M. Bauer and D. Bernard, Conformal field theories of stochastic Loewner evolutions, Comm. Math. Phys. 239 (2003), no. 3, 493-521.
DOI
|
3 |
M. Bauer and D. Bernard, CFTs of SLEs: the radial case, Phys. Lett. B 583 (2004), no. 3-4, 324-330.
DOI
ScienceOn
|
4 |
J. Cardy, Calogero-Sutherland model and bulk-boundary correlations in conformal field theory, Phys. Lett. B 582 (2004), no. 1-2, 121-126.
DOI
ScienceOn
|
5 |
N.-G. Kang and N. G. Makarov, Gaussian free field and conformal field theory, 2011. Preprint, arXiv:1101.1024.
|
6 |
N.-G. Kang and N. G. Makarov, Radial SLE martingale-observables, 2012. Preprint, arXiv:1208.2789.
|
7 |
N.-G. Kang and H.-J. Tak, Conformal field theory of dipolar SLE with the Dirichlet boundary condition, 2013. Preprint.
|
8 |
I. Rushkin, E. Bettelheim, I. A. Gruzberg, and P. Wiegmann, Critical curves in conformally invariant statistical systems, J. Phys. A 40 (2007), no. 9, 2165-2195.
DOI
ScienceOn
|
9 |
D. Zhan, Random Loewner Chains in Riemann Surfaces, 2004. Thesis (Ph.D.)-California Institute of Technology.
|