Browse > Article
http://dx.doi.org/10.4134/JKMS.2013.50.4.899

CONFORMAL FIELD THEORY OF DIPOLAR SLE(4) WITH MIXED BOUNDARY CONDITION  

Kang, Nam-Gyu (Department of Mathematical Sciences, Seoul National University)
Publication Information
Journal of the Korean Mathematical Society / v.50, no.4, 2013 , pp. 899-916 More about this Journal
Abstract
We develop a version of dipolar conformal field theory in a simply connected domain with the Dirichlet-Neumann boundary condition and central charge one. We prove that all correlation functions of the fields in the OPE family of Gaussian free field with a certain boundary value are martingale-observables for dipolar SLE(4).
Keywords
dipolar conformal field theory; martingale-observables; dipolar SLE;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Bauer, D. Bernard, and J. Houdayer, Dipolar stochastic Loewner evolutions, J. Stat. Mech. Theory Exp. (2005), no. 3, P03001, 18 pp. (electronic).
2 M. Bauer and D. Bernard, Conformal field theories of stochastic Loewner evolutions, Comm. Math. Phys. 239 (2003), no. 3, 493-521.   DOI
3 M. Bauer and D. Bernard, CFTs of SLEs: the radial case, Phys. Lett. B 583 (2004), no. 3-4, 324-330.   DOI   ScienceOn
4 J. Cardy, Calogero-Sutherland model and bulk-boundary correlations in conformal field theory, Phys. Lett. B 582 (2004), no. 1-2, 121-126.   DOI   ScienceOn
5 N.-G. Kang and N. G. Makarov, Gaussian free field and conformal field theory, 2011. Preprint, arXiv:1101.1024.
6 N.-G. Kang and N. G. Makarov, Radial SLE martingale-observables, 2012. Preprint, arXiv:1208.2789.
7 N.-G. Kang and H.-J. Tak, Conformal field theory of dipolar SLE with the Dirichlet boundary condition, 2013. Preprint.
8 I. Rushkin, E. Bettelheim, I. A. Gruzberg, and P. Wiegmann, Critical curves in conformally invariant statistical systems, J. Phys. A 40 (2007), no. 9, 2165-2195.   DOI   ScienceOn
9 D. Zhan, Random Loewner Chains in Riemann Surfaces, 2004. Thesis (Ph.D.)-California Institute of Technology.