• Title/Summary/Keyword: free vibration test

Search Result 241, Processing Time 0.025 seconds

Multi-axial Vibration Testing Methodology of Vehicle Component (자동차 부품에 대한 다축 진동내구 시험방법)

  • Kim, Chan-Jung;Bae, Chul-Yong;Lee, Dong-Won;Kwon, Seong-Jin;Lee, Bong-Hyun;Na, Byung-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.297-302
    • /
    • 2007
  • Vibrating test of vehicle component can be possible in lab-based simulators instead of field testing owing to the development of technology in control algorithm as well as computational process. Currently, Multi-Axial Simulation Table(MAST) is recommended as a vibrating equipment, which excites a target component for 3-directional translation and rotation motion simultaneously and hence, vibrational condition can be fully approximated to that of real road test. But, the vibration-free performance of target component is not guaranteed with MAST system, which is only simulator subjective to the operator. Rather, the reliability of multi-axial vibration test is dependent on the quality of input profile which should cover the required severity of vibrating condition on target component. In this paper, multi-axial vibration testing methodology of vehicle component is presented here, from data acquisition of vehicle accelerations to the obtaining the input profile of MAST using severe data at proving ground. To compare the severity of vibration condition, between real road test and proving ground one, energy principle of equivalent damage is proposed to calculate energy matrices of acceleration data and then, it is determined the optimal combination of special events on proving ground which is equivalent to real road test at the aspects of vibration fatigue using sequential searching optimal algorithm. To explain the vibration methodology clearly, seat and door component of vehicle are selected as a example.

  • PDF

Computer Simulation of Powertrain Forced Torsional Vibration (차량주행시 동력전달계의 강제진동 해석)

  • 최은오;안병민;홍동표
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.853-860
    • /
    • 1997
  • For this study, the multi-degree of freedom analysis model of torsional vibration was developed. This model is combined with mass moment of inertia and torsional spring in two wheel drive and four wheel drive vehicle. We compared and analyzed torsional vibration characteristics by natural frequencies and mode shapes which are obtained by free vibration analysis of this model. And we studied torsional vibration contribution of driveline elements by performing the forced vibration analysis of engine excitation torque. The validity of this model is demonstrated by the field test. The reduction effect of the torsional vibration along the driveline design factor is presented by the analytical results.

  • PDF

Free and Ambient Vibration of Steel-Deck Truss Bridge (강합성 데크 트러스 보도교의 자유진동해석 및 상시진동실험에 관한 연구)

  • Jung, Sung Yeop;Oh, Soon Taek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.60-68
    • /
    • 2012
  • This study describes an analytical and experimental investigation of the pedestrian steel-deck truss bridge in the City of Rochester, New York, U.S.A. This investigation was undertaken to provide assurance that this important bridge continues to be functional for this use. An ambient vibration experiment on full-scale structures is a way of assessing the reliability of the various assumptions employed in the mathematical models used in analysis. It is also the most reliable way of determining the structural parameters of major importance in structural dynamics, such as the mode shapes and the associated natural frequencies. Pedestrian-induced vibrations have been measured on the bridge to determine the displacement and the vertical and transverse dynamic characteristics of the steel deck truss. In the analytical modeling, three-dimensional finite element analysis was developed and validated against the ambient tests.

New three-layer-type hysteretic damper system and its damping capacity

  • Kim, Hyeong Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.821-838
    • /
    • 2012
  • This paper proposes a new three-layer pillar-type hysteretic damper system for residential houses. The proposed vibration control system has braces, upper and lower frames and a damper unit including hysteretic dampers. The proposed vibration control system supplements the weaknesses of the previously proposed post-tensioning vibration control system in the damping efficiency and cumbersomeness of introducing a post-tension. The structural variables employed in the damper design are the stiffness ratio ${\kappa}$, the ductility ratio ${\mu}_a$, and the ratio ${\beta}$ of the damper's shear force to the maximum resistance. The hysteretic dampers are designed so that they exhibit the targeted damping capacity at a specified response amplitude. Element tests of hysteretic dampers are carried out to examine the mechanical property and to compare its restoring-force characteristic with that of the analytical model. Analytical studies using an equivalent linearization method and time-history response analysis are performed to investigate the damping performance of the proposed vibration control system. Free vibration tests using a full-scale model are conducted in order to verify the damping capacity and reliability of the proposed vibration control system. In this paper, the damping capacity of the proposed system is estimated by the logarithmic decrement method for the response amplitudes. The accuracy of the analytical models is evaluated through the comparison of the test results with those of analytical studies.

Identification of Load Carrying and Vibration Characteristics of Oil-Free Foil Journal Bearing Structures for High Speed Motors (고속 전동기용 무급유 포일 저널 베어링 구조체의 하중지지 및 진동 특성 규명)

  • Baek, Doo San;Hwang, Sung Ho;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.261-272
    • /
    • 2021
  • This study investigates the structural characteristics of oil-free, gas beam foil journal bearings (GBFJBs) for use in high speed motors. Mathematical modeling was carried out, and reaction force modeling for static load was performed to predict the structural characteristics of the GBFJB. Mathematical modeling and reaction force modeling for static load are performed to predict the structural characteristics of GBFJBs. The reaction force of the test bearing against static loads was measured during experiments and compared with the predicted results. The measured experimental data reveal the nonlinear stiffness characteristics of the GBFJB against varying displacement and agree well with the predictions. Dynamic load tests using an exciter allow to identify the vibration characteristics of the GBFJB. Test results show that the vibration displacement, dynamic force, and acceleration measured on the test bearing are most dominant at the applied dynamic load (synchronization) frequency. Futhermore, the test results show that the hysteresis area recorded during the dynamic tests increases with the excitation amplitude and frequency, and that the beam stick phenomena occurr at high excitation frequencies. The single degree of freedom (DOF) vibration model aids to identify the stiffness and damping coefficient of the GBFJB, which decrease as the excitation frequency increases.

A Study on the Vibration Characteristics of Powertrain in Motion (차량 주행시 동력전달계의 진동 특성 연구)

  • 최은오;홍동표;안병민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.27-33
    • /
    • 1998
  • The powertrain is a system of exciters which are connected by vibration transmitters and noise radiators. The powertrain has infinite natural frequencies. If the engine explosion, excites a certain natural frequency, then the powertrain system seriously vibrates. The torsional vibration arises from here. Torsional vibration like this can cause various noises as rattle and booming. In this study, the simulation models of multiple degrees of freedom were developed to reduce the torsional vibration of the powertrain. These models are combined mass moment of inertias with torsional springs. The free and forced vibration analyses were carried out by these models; and the validity of the simulation models were checked by the field test. The reduction effect of the torsional vibration along the driveline design factor is presented by the analytical results.

  • PDF

Experimental investigation of an active mass damper system with time delay control algorithm

  • Jang, Dong-Doo;Park, Jeongsu;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.863-879
    • /
    • 2015
  • This paper experimentally investigates the effectiveness and applicability of the time delay control (TDC) algorithm, which is simple and robust to unknown system dynamics and disturbance, for an active mass damper (AMD) system to mitigate the excessive vibration of a building structure. To this end, the theoretical background including the mathematical formulation of the control system is first described; and then, a thorough experimental study using a shaking table system with a small-scale three-story building structural model is conducted. In the experimental tests, the performance of the proposed control system is examined by comparing its structural responses with those of the uncontrolled system in the free vibration and forced vibration cases. It is clearly verified from the test results that the TDC algorithm embedded AMD system can effectively reduce the structural response of the building structure.

Vibration Analysis of Orthortopic Composite Plate According to Elastic Reaction Effect (탄성반력의 영향에 따른 직교 이방성 복합판의 고유 진동 해석)

  • Jung, Young-Hwa;Shim, Do-Sik;Kim, Kyoung-Jin;Lee, Se-Jin
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.199-204
    • /
    • 1997
  • In this paper, the result of application of vibration method to the orthotropic plates with free edges supported on elastic foundation and with a pair of opposite edges under axial forces is presented. Such plates represent the concrete highway slab and hybrid composite pavement of bridges. The reinforced concrete slab can be assumed as a special orthotropic plate, as a close approximation. The highway slab is supported on elastic foundation, with free boundaries. Sometimes, the pair of edges perpendicular to the traffic direction may be subject to the axial forces. The plate is subject to the concentrated load/loads, in the form of traffic loads, or the test equipments. Finite difference method is used to obtain the deflection influence surfaces needed for vibration analysis. The influence of the modulus of the foundation, the aspect ratio of the plate, and the magnitudes of the axial forces and the concentrated attached mass on the plate, under the natural frequency is thoroughly studied.

  • PDF

Free Vibration Analysis of Cantilevered Composite and Hybrid Composite Triangular Plates (외팔형 복합재료 및 혼합적층 삼각판의 자유진동 해석)

  • 이영신;최명환
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.259-269
    • /
    • 1993
  • For efficient use of composite materials in engineering applications the dynamic behavior, that is, natural frequencies, nodal patterns should be informed. This study presents the experimental and FEM results for the free vibration of cantilevered, symmetrically and antisymmetrically laminated composite triangular plates. The natural frequencies and nodal patterns of a number of CFRP, GFRP, composite-Aluminum and CFRP-GFRP hybrid composite plates are experimentally obtained. A method for the determination of the Young's modulus and test procedures are described. The natural frequencies are determined for a wide range of parameters: e.g., composite material constants, fiber angles and stacking sequences. Natural frequency and nondimensional frequency parameter results are compared with the finite element analysis and existing literatures. Agreement between experimental and calculated frequencies is excellent.

  • PDF

Free vibration of functionally graded thin elliptic plates with various edge supports

  • Pradhan, K.K.;Chakraverty, S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.337-354
    • /
    • 2015
  • In this article, free vibration of functionally graded (FG) elliptic plates subjected to various classical boundary conditions has been investigated. Literature review reveals no study has been performed based on functionally graded elliptic plates till date. The mechanical kinematic relations are considered based on classical plate theory. Rayleigh-Ritz technique is used to obtain the generalized eigenvalue problem. The material properties of the FG plate are assumed to vary along thickness direction of the constituents according to power-law form. Trial functions denoting the displacement components are expressed in simple algebraic polynomial forms which can handle any edge support. The objective is to study the effect of geometric configurations and gradation of constituent volume fractions on the natural frequencies. New results for frequency parameters are incorporated after performing a test of convergence. A comparison study is carried out with existing literature for validation in special cases. Three-dimensional mode shapes for circular and elliptic FG plates are also presented with various boundary conditions at the edges.