• Title/Summary/Keyword: free radical damage

Search Result 377, Processing Time 0.027 seconds

A Study on the Oxidative Damage Induced by UVB Irradiation to Mouse Skin (UVB 조사로 인한 마우스 피부조직의 산화적 손상)

  • Rhie Sung-Ja;Kim Young-Chul
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.2 s.53
    • /
    • pp.165-172
    • /
    • 2006
  • The backs with a hair cut of 6-week-old healthy ICR male mice were once exposed to a dose of $400mJ/cm^2$ UVB. An acute dermal inflammation was observed, and the inflamed skins were almost completely cured after 6 days of the exposure. At 24 hours after exposure, the epidermal keratinocytes showed a cell-membrane damage with the destruction of intercellular junctions, agglutination of tonofilaments within the cytoplasm and nucleus damage. The activity of XO showed a significant increase (p<0.05) in up to 144 hours. The activities of CAT and SOD showed a significant decrease (p<0.05) in up to 96 hours, but they were not significantly different from the normal value at 144 hours. The GST activity was significantly decreased (p<0.01) in up to 96 hours, not so at 24 hours. However, that was not significantly different from the normal value at 144 hours. There was a significant decrease (p<0.01) in the contents of TBARS at 48 and 96 hours, without any significant difference at 144 hours. While the content of GSH was significantly lower (p<0.05) at 24 hours, that was not significantly different thereafter up to 144 hours from the normal value. Therefore, it is assumed that skin damage with a dose of $400mJ/cm^2$ UVB irradiation might be caused by the oxidative stress which was resulted from the unbalance of oxygen fret radical generating and scavenging enzymes.

A Short Term Screening Method for Carcinogenic Quinone Compounds (Quinone계 화합물의 발암성 조기검색법에 관한 연구)

  • Cho, Dae-Hyun;Hong, Jin-Tae;Park, Jeong-Sik;Hong, Youn-Tack;Chin, Kang;Jung, Myung-Hee;Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.8 no.2
    • /
    • pp.171-177
    • /
    • 1992
  • To investigate a short term screening method for carcinogenic quinone compounds, 8-hydroxydeoxyguanosine (8-OHdG), an oxidative DNA damage, was determined in the kidney and liver DNA isolated from Sprague-Dawley rats after i.p.injection of 7 mg/kg adriamycin (AM), 7mg/kg tetrahydropyranyladriamycin (THP), and 10mg/kg daunomycin (DM) by HPLC-electrochemical detector system. 8-OHdG was also determined from rat hepatocvtes and calf thymus DNA exposed to AM, DM and THP. When rats were treated with DM and THP, 8-OHdG was significantly increased in the kidney compared to control group, and remained at high level (7.9~9.0, 8-OHdG/dG${\times}10^4$)at the end of experiments (48hr after treatment). 8-OHdG level in cultured hepatocyte exposed to AM, DM and THP was 1.5~2 fold higher than control at all time points. (1,2,3,4hr after treatment). From calf thymus DNA exposed to AM, DM and THP, 8-OHdG was 2.5 fold higher than of control. These results suggest that quantitation of 8-OHdG may provide a useful marker for identifying target organ in oxidative chemical carcinogenesis and for short term screening of free radical generating carcinogens.

  • PDF

The Restorative Effect of Gallic Acid on the Experimental Sciatic Nerve Damage Model

  • Gurkan, Gokhan;Erdogan, Mumin Alper;Yigitturk, Gurkan;Erbas, Oytun
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.873-881
    • /
    • 2021
  • Objective : Peripheral nerve injuries occur mostly as a result of mechanical trauma. Due to the microvascular deterioration in peripheral nerve damage, it becomes challenging to remove free oxygen radicals. Gallic acid is a powerful antioxidant with anti-inflammatory effects and a free radical scavenger. The purpose of the study is to show that gallic acid contributes to the restorative effect in mechanical nerve damage, considering its antioxidant and anti-inflammatory effects. Methods : Thirty male Sprague Dawley albino mature rats were included in the study. Ten of them constituted the control group, 10 out of 20 rats for which sciatic nerve damage was caused, constituted the saline group, and 10 formed the gallic acid group. Post-treatment motor functions, histological, immunohistochemical, and biochemical parameters of the rats were evaluated. Results : Compared to the surgery+saline group, lower compound muscle action potential (CMAP) latency, higher CMAP amplitude, and higher inclined plane test values were found in the surgery+gallic acid group. Similarly, a higher nerve growth factor (NGF) percentage, a higher number of axons, and a lower percentage of fibrosis scores were observed in the surgery+gallic acid group. Finally, lower tissue malondialdehyde (MDA) and higher heat shock protein-70 (HSP-70) values were determined in the surgery+gallic acid group. Conclusion : Gallic acid positively affects peripheral nerve injury healing due to its anti-inflammatory and antioxidant effects. It has been thought that gallic acid can be used as a supportive treatment in peripheral nerve damage.

Protective Effect of a 43 kD Protein from the Leaves of the Herb, Cajanus indicus L on Chloroform Induced Hepatic-disorder

  • Ghosh, Ayantika;Sarkar, Kasturi;Sil, Parames C.
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.197-207
    • /
    • 2006
  • Cajanus indicus is a herb with medicinal properties and is traditionally used to treat various forms of liver disorders. Present study aimed to evaluate the effect of a 43 kD protein isolated from the leaves of this herb against chloroform induced hepatotoxicity. Male albino mice were intraperitoneally treated with 2mg/kg body weight of the protein for 5 days followed by oral application of chloroform (0.75ml/kg body weight) for 2 days. Different biochemical parameters related to physiology and pathophysiology of liver, such as, serum glutamate pyruvate transaminase and alkaline phosphatase were determined in the murine sera under various experimental conditions. Direct antioxidant role of the protein was also determined from its reaction with Diphenyl picryl hydraxyl radical, superoxide radical and hydrogen peroxide. To find out the mode of action of this protein against chloroform induced liver damage, levels of antioxidant enzymes catalase, superoxide dismutase and glutathione-S-transferase were measured from liver homogenates. Peroxidation of membrane lipids both in vivo and in vitro were also measured as malonaldialdehyde. Finally, histopathological analyses were done from liver sections of control, toxin treated and protein pre- and post-treated (along with the toxin) mice. Levels of serum glutamate pyruvate transaminase and alkaline phosphatase, which showed an elevation in chloroform induced hepatic damage, were brought down near to the normal levels with the protein pretreatment. On the contrary, the levels of anti-oxidant enzymes such as catalase, superoxide dismutase and glutathione-S-transferase that had gone down in mice orally fed with chloroform were significantly elevated in protein pretreated ones. Besides, chloroform induced lipid peroxidation was effectively reduced by protein treatment both in vivo and in vitro. In cell free system the protein effectively quenched diphenyl picryl hydrazyl radical and superoxide radical, though it could not catalyse the breakdown of hydrogen peroxide. Post treatment with the protein for 3 days after 2 days of chloroform administration showed similar results. Histopathological studies indicated that chloroform induced extensive tissue damage was less severe in the mice livers treated with the 43 kD protein prior and post to the toxin administration. Results from all these data suggest that the protein possesses both preventive and curative role against chloroform induced hepatotoxicity and probably acts by an anti-oxidative defense mechanism.

Effect of Hydropsyche kozhantschikovi Extracts on Oxidative Stress (줄날도래 추출물이 산화적 스트레스에 미치는 영향)

  • Park, Young Mi;Lim, Jae Hwan;Lee, Jong Eun;Seo, Eul Won
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.31-37
    • /
    • 2013
  • The present study aimed to investigate effects of ethanol extracts from Hydropsyche kozhantschikovi on cell and DNA damage caused by oxidative stress. In a radical scavenging assay, compared with ascorbic acid used as a control, the level of DPPH (1,1-diphenyl-2-picrylhydrazyl) and that of hydroxyl radicals in H. kozhantschikovi extracts were 60.0% and 43.7%, respectively. The ferrous iron chelating level was 37.5% compared to the chelating value of EDTA (ethylenediaminetetraacetic acid) as a positive control at the same concentration. To verify inhibitory effects of oxidative cell damage induced by reactive oxygen species (ROS), the relative level of lipid peroxidation and the expression level of the p21 protein were compared in extracts-treated and untreated groups. Lipid peroxidation was completely inhibited in the extracts-treated group compared with the radical-only treated group. The level of p21 protein expression was restored to 92.2% of p21 protein expression in the control sample. In addition, DNA cleavage inhibition in the H. kozhantschikovi extracts was 74.1% compared with that of the control group, suggesting that H. kozhantschikovi extracts repress DNA cleavage induced by ROS. Moreover, the phosphorylation ratio of the H2AX protein was 16.7% in the radical-treated group, indicating that the ethanol extracts inhibited 83.3% of DNA damage. Our findings suggest that ethanol extracts from H. kozhantschikovi are effective not only in repressing the oxidation of free radicals and highly toxic hydroxyl radicals, but also in decreasing cell and DNA damage caused by oxidative stress.

Acanthopanax sessiliflorus stem confers increased resistance to environmental stresses and lifespan extension in Caenorhabditis elegans

  • Park, Jin-Kook;Kim, Chul-Kyu;Gong, Sang-Ki;Yu, A-Reum;Lee, Mi-Young;Park, Sang-Kyu
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.526-532
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Acanthopanax sessiliflorus is a native Korean plant and used as a traditional medicine or an ingredient in many Korean foods. The free radical theory of aging suggests that cellular oxidative stress caused by free radicals is the main cause of aging. Free radicals can be removed by cellular anti-oxidants. MATERIALS/METHODS: Here, we examined the anti-oxidant activity of Acanthopanax sessiliflorus extract both in vitro and in vivo. Survival of nematode C. elegans under stress conditions was also compared between control and Acanthopanax sessiliflorus extract-treated groups. Then, anti-aging effect of Acanthopanax sessiliflorus extract was monitored in C. elegans. RESULTS: Stem extract significantly reduced oxidative DNA damage in lymphocyte, which was not observed by leaves or root extract. Survival of C. elegans under oxidative-stress conditions was significantly enhanced by Acanthopanax sessiliflorus stem extract. In addition, Acanthopanax sessiliflorus stem increased resistance to other environmental stresses, including heat shock and ultraviolet irradiation. Treatment with Acanthopanax sessiliflorus stem extract significantly extended both mean and maximum lifespan in C. elegans. However, fertility was not affected by Acanthopanax sessiliflorus stem. CONCLUSION: Different parts of Acanthopanax sessiliflorus have different bioactivities and stem extract have strong anti-oxidant activity in both rat lymphocytes and C. elegans, and conferred a longevity phenotype without reduced reproduction in C. elegans, which provides conclusive evidence to support the free radical theory of aging.

OXIDATIVE DAMAGE, DNA REPAIR AND SIGNAL TRANSDUCTION IN CHEMICAL TERATOGENESIS.

  • Peter G Wells;Yadvinder Bhuller;Connie S Chen;Jeffrey T Henderson;Winnie Jeng;Sonja Kasapinovic;Julia C Kennedy;Rebecca R Laposa;Christopher J Nicol;Toufan Parman;Michael J Wiley;Louise M Winn;Andrea W Wong
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.44-64
    • /
    • 2002
  • Embryonic prostaglandin H synthases (PHSs) and lipoxygenases bioactivate xenobiotics (phenytoin, thalidomide, benzo[a]pyrene) to free radical intermediates that initiate reactive oxygen species (ROS) formation, which oxidatively damage cellular macromolecules and/or alter signal transduction.(omitted)

  • PDF

Chemopreventive Efficacy of Moringa oleifera Pods Against 7, 12-Dimethylbenz[a]anthracene Induced Hepatic Carcinogenesis in Mice

  • Sharma, Veena;Paliwal, Ritu;Janmeda, Pracheta;Sharma, Shatruhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2563-2569
    • /
    • 2012
  • Oxidative stress is a common mechanism contributing to initiation and progression of hepatic damage in a variety of liver disorders. Hence there is a great demand for the development of agents with potent antioxidant effect. The aim of the present investigation is to evaluate the efficacy of Moringa oleifera as a hepatoprotective and an antioxidant against 7, 12-dimethylbenz[a]anthracene induced hepatocellular damage. Single oral administration of DMBA (15 mg/kg) to mice resulted in significantly (p<0.001) depleted levels of xenobiotic enzymes like, cytochrome P450 and b5. DMBA induced oxidative stress was confirmed by decreased levels of reduced glutathione (GSH) and glutathione-S-transferase (GST) in the liver tissue. The status of hepatic aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) which is indicative of hepatocellular damage were also found to be decreased in DMBA administered mice. Pretreatment with the Moringa oleifera (200 and 400 mg/kg) orally for 14 days significantly reversed the DMBA induced alterations in the liver tissue and offered almost complete protection. The results from the present study indicate that Moringa oleifera exhibits good hepatoprotective and antioxidant potential against DMBA induced hepatocellular damage in mice that might be due to decreased free radical generation.

Inhibitory Effect of Coprinus comatus Ethanol Extract on the Liver damage in Benzo(a)pyrene-treated Mice (먹물버섯 에탄올추출물이 Benzo(a) pyrene 투여에 의한 마우스의 간 손상에 미치는 영향)

  • 이갑랑;이병훈;김현정;장종선;배준태;박선희;이승언;김옥미;이별나
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1364-1368
    • /
    • 1999
  • This study was carried out to investigate the inhibiton effects of Coprinus comatus ethanol extract of edible mushroom on liver damage in benzo(a)pyrene (B(a)P) treated mice. The activities of serum aminotransferase, cytochrome P 450 and hepatic content of lipid peroxide after B(a)P treatment were increased than those of control, but those levels were significantly decreased by the treatment of Coprinus comatus ethanol extract. Whereas, the hepatic glutathione content and glutathione S transferase activity were decreased by B(a)P treatment than those of control, but those were increased by the treatment of Coprinus comatus ethanol extract. Also the activities of superoxide dismutase, catalase and glutathione peroxidase after B(a)P treatment were markedly increased than those of control, but those levels were decreased by the treatment of Coprinus comatus ethanol extract. These results suggest that Coprinus comatus ethanol extract have a protective effect on liver damage by benzo(a)pyrene through the mechanisms of decreasing lipid peroxide and activities of free radical generating enzymes.

  • PDF

Vitamin E Modulates Radiation-induced Oxidative Damage in Mice Fed a High-Lipid Diet

  • Shin, Sung-Jae
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.190-195
    • /
    • 2003
  • The Vitamin E (VE) effect was examined on oxidative damage to DNA, lipids, and protein in mice that were fed various levels of lipid diets after total body irradiation (TBI) with X-rays at 2 Gy. No increase of 8-hydroxydeoxyguanosine (8OHdG) by TBI was observed in the +VE group; however, in the case of the -VE group, a significantly higher 8OHdG level was observed in the high-lipid group than in the low- or basal-lipid group. In the groups with TBI, the concentration of thiobarbituric reactive substances (TBARS) only significantly increased in the high-lipid (-VE) group. These changes in TBARS, due to TBI, were not detected in other groups. The contents of protein carbonyls only increased in the (-VE) group. The contents of protein carbonyls was significantly different between the (+VE) and the (-VE) groups, regardless of the lipid levels. The concentrations of GSH, vitamins C and E in the liver were lower, and the concentration of non-heme iron in the liver was higher in the high-lipid group than in the low- and basal-lipid groups. These concentrations in the high-lipid group were significantly different between the (+VE) and the (-VE) groups. These results strongly suggest that mice that are fed a high-lipid diet are susceptible to TBI-induced oxidative damage. Also, decreases in the GSH levels and an increase in the iron level are involved in the mechanism of this susceptibility.