• Title/Summary/Keyword: free axial vibration

Search Result 173, Processing Time 0.021 seconds

A computational shear displacement model for vibrational analysis of functionally graded beams with porosities

  • Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.369-384
    • /
    • 2015
  • This work presents a free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a simple displacement field based on higher order shear deformation theory is implemented. The proposed theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. In addition, it has strong similarities with Euler-Bernoulli beam theory in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. By employing the Hamilton's principle, governing equations of motion for coupled axial-shear-flexural response are determined. The validity of the present theory is investigated by comparing some of the present results with those of the first-order and the other higher-order theories reported in the literature. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

Helicopter BVI Noise Prediction Using Acoustic Analogy and High Resolution Airloads of Time Marching Free Wake Method (자유후류기법에 의한 고해상도 공기력과 음향상사법을 이용한 헬리콥터 로터 블레이드-와류 상호작용 소음 예측)

  • Chung, K.;Lee, D.J.;Hwang, C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.291-297
    • /
    • 2006
  • The BVI(blade vortex interaction) noise Prediction has been one of the most challenging acoustic analyses in helicopter aeromechanical Phenomenon. It is well known high resolution airloads data with accurate tip vortex positions are necessary for the accurate prediction of this phenomenon. The truly unsteady time-marching free-wake method, which is able to capture the tip vortices instability in hover and axial flights, is expanded with the rotor flapping motion and trim routine to predict unsteady airloads in forward and descent flights. And Farassat formulation 1-A based on the FW-H equation is applied for the noise prediction considering the blade flapping motion. Main objective of this study is to validate the newly developed prediction code. To achieve the objective, the descent flight condition of AH-1 OLS(operational loads survey) configuration is analyzed using present code. The predicted sectional thrust distribution and sectional airloads time histories show the present scheme is able to capture well the unsteady airloads caused by a parallel BVI. Finally, the predicted noise data, observed in two different positions where are 3.44 times of rotor radius far from the hub center, are quite reasonable agreements with the experimental data compared to the other analysis results.

Analytical vibration of FG cylindrical shell with ring support based on various configurations

  • Hussain, Muzamal;Selmi, Abdellatif
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.557-568
    • /
    • 2020
  • In this study, the impact of ring supports around the shell circumferential has been examined for their various positions along the shell axial length using Rayleigh-Ritz formulation. These shells are stiffened by rings in the tangential direction. For isotropic materials, the physical properties are same everywhere where the laminated and functionally graded materials, they vary from point to point. Here the shell material has been taken as functionally graded material. The influence of the ring supports is investigated at various positions. These variations have been plotted against the locations of ring supports for three values of length-to-diameter ratios. Effect of ring supports with middle layer thickness is presented using the Rayleigh-Ritz procedure with three different conditions. The influence of the positions of ring supports for clamped-clamped is more visible than simply supported and clamped-free end conditions. The frequency first increases and gain maximum value in the midway of the shell length and then lowers down. The Lagrangian functional is created by adding the energy expressions for the shell and rings. The axial modal deformations are approximated by making use of the beam functions. The comparisons of frequencies have been made for efficiency and robustness for the present numerical procedure. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped, simply supported-simply supported frequency curves are higher than that of clamped-simply curves. To generate the fundamental natural frequencies and for better accuracy and effectiveness, the computer software MATLAB is used.

Free Vibrations and Buckling Loads of Axially Loaded Cross-Ply Laminated Composite Beam-Columns with Multiple Delaminations (다층간분리된 직교 적층 보-기둥의 자유진동과 좌굴하중)

  • 이성희;김형열;박기태;박대효
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.523-534
    • /
    • 2002
  • Free vibration and buckling analysis of multi-delaminated composite beam-columns subjected to axial compressive load is performed in the present study In order to investigate the effects of multi-delaminations on the natural frequency and the elastic buckling load of multi-delaminated beam-columns, the general kinematic continuity conditions are derived from the assumption of constant slope and curvature at the multi-dclamination tip. The characteristic equation of multi-delaminated beam-column is obtained by dividing the global multi-delauunated beam-columns into segments and by imposing recurrence relation from the continuity conditions on each sub-beam-column. The natural frequency and the elastic buck)ing load of multi-delaminated beam-columns according to the incremental load of axial compression, which is limited to the maximum elastic buckling load of sound laminated beam-column, are obtained. It is found that the sizes, locations and numbers of multi-delaminations have significant effect on natural frequency and elastic buckling load, especially the latter ones.

Investigation of the vibration of lattice composite conical shells formed by geodesic helical ribs

  • Nezamoleslami, Reza;Khadem, Siamak E.
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.249-264
    • /
    • 2017
  • In this paper free linear vibration of lattice composite conical shells will be investigated. Lattice composite conical shell consists of composite helical ribs and thin outer skin. A smeared method is employed to obtain the variable coefficients of stiffness of conical shell. The ribs are modeled as a beam and in addition to the axial loads, endure shear loads and bending moments. Therefore, theoretical formulations are based on first-order shear deformation theory of shell. For verification of the obtained results, comparison is made with those available in open literature. Also, using FEM software the 3D finite element model of composite lattice conical shell is built and analyzed. Comparing results of analytical and numerical analyses show a good agreement between them. Some special cases as variation of geometric parameters of lattice part, effect of the boundary conditions and influence of the circumferential wave numbers on the natural frequencies of the conical shell are studied. It is concluded, when mass and the geometrical ratio of the composite lattice conical shell do not change, increment the semi vertex angle of cone leads to increase the natural frequencies. Moreover for shell thicknesses greater than a specific value, the presence of the lattice structure has not significant effect on the natural frequencies. The obtained results have novelty and can be used for further and future researches.

Effects of the Longitudinal Inertia Force on Timoshenko Beam Vibration (Timoshenko 보의 진동에 미치는 축방향관성력의 영향에 관하여)

  • ;Lee, Nack Joo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.2 no.3
    • /
    • pp.62-68
    • /
    • 1978
  • The influences of the large amplitude free vibrations of simply supported Timoshenko beams with ends restrained to remain a fixed distance apart and with no axial restraints, which cause a longitudinal elastic force and a longitudinal inertia force, respectively, are investigated. The equations of motion derived by an appropriate linearizarion of the nonlinear strain- displacement relation have nonlinear terms arising from large curvature, longitudinal elastic force and longitudinal inertia force. The fourth order nonlinear partial differential equations for the deflection, can be reduced to the nonlinear ordinary differential equations by means of Galerkin procedure and a modal expansion. The general response and frequensy-amplitude relations are derived by the perturbation method of strained parameters. Comparison with previously published results is made.

Exact Dynamic Element Stiffness Matrices of Shear Deformable Nonsymmetric Thin-walled Beam-Columns (전단변형을 받는 비대칭 박벽 보-기둥 요소의 엄밀한 동적강도행렬)

  • Yoon Hee-Taek;Park Young-Kon;Kim Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.536-543
    • /
    • 2005
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled curved beams subjected to axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. Firstly this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of the nonsymmetric thin-walled curved beam are evaluated and compared with analytical solutions or results by ABAQUS's shell elements in order to demonstrate the validity of this study.

  • PDF

Finite Element Structural Analysis of Open-Section Composite Beams Considering Transverse Shear (전단변형을 고려한 개방형 단면 복합재료 보의 유한요소 구조해석)

  • 정성남
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.161-164
    • /
    • 2000
  • In this paper, a finite element structural analysis for thin-walled open-section composite beams with elastic couplings has been performed. The analysis includes the effects of transverse shear across beam sections, torsion warping and constrained warping. Reissner's semi-complementary energy functional is used to obtain the beam st illness coefficients The bending and torsion related warpings and the shear correct ion factors are obtained as part of the analysis. The resulting theory describes the beam kinematics in terms of the axial, flap and lag bending, flap and lag shear, torsion and torsion-warping deformations. The static response has been validated against finite element predict ions, closed form solutions, and experimental data for rectangular sol id and I-beams with elastic couplings. The free vibration results are also compared with available literature.

  • PDF

Vibrations of truncated shallow and deep conical shells with non-uniform thickness

  • Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.29-46
    • /
    • 2015
  • A three-dimensional (3-D) method of analysis is presented for determining the natural frequencies of a truncated shallow and deep conical shell with linearly varying thickness along the meridional direction free at its top edge and clamped at its bottom edge. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components $u_r$, $u_{\theta}$, and $u_z$ in the radial, circumferential, and axial directions, respectively, are taken to be periodic in ${\theta}$ and in time, and algebraic polynomials in the r and z directions. Strain and kinetic energies of the truncated conical shell with variable thickness are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated. The frequencies from the present 3-D method are compared with those from other 3-D finite element method and 2-D shell theories.

Coupld Free Lateral Vibration Analysis of Shafting by the Finite Element Method (유한요소법(有限要素法)에 의(依)한 축계(軸系)의 연성자유횡진동해석(聯成自由橫振動解析)에 관(關)한 연구(硏究))

  • Si-Young,Ahn
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 1986
  • Coupled lateral vibrations of shafting is analyzed by the Finite Element Method. In the problem formulation axial force, elastic foundation effects and rotary inertia effects are taken into account. A computer program is developed to calculate natural frequencies of the shafting, and used to calculate natural frequencies of the experimental model shafting, which the author used for the paper[11]. The results show good agreement with the measured values. The results are also compared with those of the Transfer Matrix Method. From the comparison it is found that both results agree each other.

  • PDF