Browse > Article
http://dx.doi.org/10.12989/scs.2017.24.2.249

Investigation of the vibration of lattice composite conical shells formed by geodesic helical ribs  

Nezamoleslami, Reza (Department of Mechanical Engineering, Tarbiat Modares University)
Khadem, Siamak E. (Department of Mechanical Engineering, Tarbiat Modares University)
Publication Information
Steel and Composite Structures / v.24, no.2, 2017 , pp. 249-264 More about this Journal
Abstract
In this paper free linear vibration of lattice composite conical shells will be investigated. Lattice composite conical shell consists of composite helical ribs and thin outer skin. A smeared method is employed to obtain the variable coefficients of stiffness of conical shell. The ribs are modeled as a beam and in addition to the axial loads, endure shear loads and bending moments. Therefore, theoretical formulations are based on first-order shear deformation theory of shell. For verification of the obtained results, comparison is made with those available in open literature. Also, using FEM software the 3D finite element model of composite lattice conical shell is built and analyzed. Comparing results of analytical and numerical analyses show a good agreement between them. Some special cases as variation of geometric parameters of lattice part, effect of the boundary conditions and influence of the circumferential wave numbers on the natural frequencies of the conical shell are studied. It is concluded, when mass and the geometrical ratio of the composite lattice conical shell do not change, increment the semi vertex angle of cone leads to increase the natural frequencies. Moreover for shell thicknesses greater than a specific value, the presence of the lattice structure has not significant effect on the natural frequencies. The obtained results have novelty and can be used for further and future researches.
Keywords
conical shell; lattice; composite; helical rib; smear method; shear deformation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Methods Eng., 24(3), 169-181.   DOI
2 Civalek, O. (2013), "Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory", Compos.: Part B, 45(1), 1001-1009.   DOI
3 Darilmaz, K. (2012), "Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior", Steel Compos. Struct., Int. J., 12(4), 275-289.   DOI
4 Garnet, H. and Kempner, J. (1960), "Axisymmetric free vibrations of conical shells", J. Appl. Mech., 31(3), 458-466.   DOI
5 Golfman, Y. (2007), "Dynamic stability of the lattice structures in the manufacturing of carbon fiber epoxy/composites including the influence of damping properties", J. Adv. Mater. (Special Ed.), 3, 11-20.
6 Gurdal, Z. and Gendron, G. (1993), "Optimal design of geodesically stiffened composite cylindrical shells", Compos. Eng., 3(12), 1131-1147.   DOI
7 Hemmatnezhad, M., Rahimi, G.H. and Ansari, R. (2014), "On the free vibrations of grid-stiffened composite cylindrical shells", Acta Mech., 225(2), 609-623.   DOI
8 Irie, T., Yamada, G. and Kaneko, Y. (1982), "Free vibration of a conical shell with variable thickness", J. Sound Vib., 82(1), 83-94.   DOI
9 Civalek, O. (2007), "Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC)", Int. J. Struct. Eng. Mech., 25(1), 127-130.   DOI
10 Irie, T., Yamada, G. and Tanaka, K. (1984), "Natural frequencies of truncated conical shells", J. Sound Vib., 92(3), 447-453.   DOI
11 Kadoli, R. and Ganesan, N. (2003), "Free vibration and buckling analysis of composite cylindrical shells conveying hot fluid", Compos. Struct., 60(1), 19-32.   DOI
12 Liang, W., He, Y., Yang, L.L. and Sha, L. (2011), "The buckling and dynamic analysis of composite grid stiffened structure", Appl. Mech. Mater., 52, 1794-1799.
13 Kidane, S., Li, G., Helms, J., Pang, S. and Woldesenbet, E. (2003), "Buckling load analysis of grid stiffened composite cylinders", Compos.: Part B, 34(1), 1-9.
14 Kim, T.D. (1999), "Fabrication and testing of composite isogrid stiffened cylinder", Compos. Struct., 45(1), 1-6.   DOI
15 Kim, T.D. (2000), "Fabrication and testing of thin isogrid composite stiffened panel", Compos. Struct., 49(1), 21-45.   DOI
16 Liew, K.M., Ng, T.Y. and Zhao, X. (2005), "Free vibration analysis of conical shells via the element-free kp-Ritz method", J. Sound Vib., 281(3), 627-645.   DOI
17 Liew, K.M. and Lim, C.W. (1995), "Vibratory characteristics of cantilevered rectangular shallow shells of variable thickness", AIAA J., 32(2), 387-396.   DOI
18 Liew, K.M., Lim, M.K., Lim, C.W., Li D.B. and Zhang, Y.R. (1995), "Effects of initial twist and thickness variation on the vibration behaviour of shallow conical shells", J. Sound Vib., 180(2), 271-296.   DOI
19 Liew, K.M., Lim, C.W. and Kitipornchai, S. (1997) "Vibration of shallow shells: a review with bibliography", J. Appl. Mech. Rev., 50, 431-444.   DOI
20 Lim, C.W. and Liew, K.M. (1995), "Vibratory behavior of shallow conical shells by a global Ritz formulation", Eng. Struct., 17(1), 63-70.   DOI
21 Lim, C.W., Liew, K.M. and Kitipornchai, S. (1998), "Vibration of cantilevered laminated composite shallow conical shells", Int. J. Solids Struct., 35(15), 1695-1707.   DOI
22 Lopatin, A.V., Morozov, E.V. and Shatov, A.V. (2015), "Fundamental frequency of a cantilever composite filament-wound anisogrid lattice cylindrical shell", Compos. Struct., 133, 564-575.   DOI
23 Saunders, H., Wisniewski, E.J. and Pasley, P.R. (1960), "Vibration of conical shells", J. Acoust. Soc. Am., 32(6), 765-772.   DOI
24 Lopatin, A.V., Morozov, E.V. and Shatov, A.V. (2016), "An analytical expression for fundamental frequency of the composite lattice cylindrical shell with clamped edges", Compos. Struct., 141, 232-239.   DOI
25 Morozov, E.V., Lopatin, A.V. and Nesterov, V.A. (2011), "Buckling analysis and design of anisogrid composite lattice conical shells", Compos. Struct., 93(12), 3150-3162.   DOI
26 Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, Elsevier, Academic Press, Amsterdam, Netherlands.
27 Shi, S., Sun, Z., Ren, M., Chen, H. and Hu, X. (2013), "Buckling resistance of grid-stiffened carbon-fiber thin-shell structures", Compos.: Part B, 45, 888-896.   DOI
28 Shu, C. (1996), "Free vibration analysis of composite laminated conical shells by generalized differential quadrature", J. Sound Vib., 194(4), 587-604.   DOI
29 Siu, C.C. and Bert, C.W. (1970), "Free vibrational analysis of sandwich conical shells with free edges", J. Acoust. Soc. Am., 47(3B), 943-955.   DOI
30 Sivadas, K.R. and Ganesan, N. (1992), "Vibration analysis of thick composite clamped conical shells with variable thickness", J. Sound Vib., 152(1), 27-37.   DOI
31 Slinchenko, D. and Verijenko, V.E. (2001), "Sructural analysis of composite lattice shells of revolution on the basis of smearing stiffness", Compos. Struct., 54(2), 341-348.   DOI
32 Sofiyev, A.H. and Karaca, Z. (2009), "The vibration and stability of laminated non homogeneous orthotropic conical shells subjected to external pressure", Eur. J. Mech.-A/Solids, 28(2), 317-328.   DOI
33 Sofiyev, A.H. and Kuruoglu, N. (2011), "Natural frequency of laminated orthotropic shells with different boundary conditions and resting on the Pasternak type elastic foundation", Compos. Part B: Eng., 42(6), 1562-1570.   DOI
34 Sofiyev, A.H., Omurtag, M. and Schnack, E. (2009), "The vibration and stability of orthotropic conical shells with nonhomogeneous material properties under a hydrostatic pressure", J. Sound Vib., 319(3), 963-983.   DOI
35 Tong, L. (1993a), "Free vibration of orthotropic conical shells", Int. J. Eng. Sci., 31(5), 719-733.   DOI
36 Tong, L. (1993b), "Free vibration of composite laminated conical shells", Int. J. Mech. Sci., 35(1), 47-61.   DOI
37 Tong, L. (1994), "Free vibration of laminated conical shells including transverse shear deformation", Int. J. Solids Struct., 31(4), 443-456.   DOI
38 Totaro, G. (2011), "Multilevel optimization of anisogrid lattice structures for aerospace", Ph.D. Thesis; Delft University of Technology, Delft, Netherlands.
39 Totaro, G. (2013a), "Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with hexagonal cells", Compos. Struct., 94(2), 403-410.   DOI
40 Totaro, G. (2012), "Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with triangular cells", Compos. Struct., 94(2), 446-452.   DOI
41 Totaro, G. (2013b), "Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with hexagonal cells", Compos. Struct., 95, 403-410.   DOI
42 Totaro, G. and De Nicola, F. (2012), "Recent advance on design and manufacturing of composite anisogrid structures for space launchers", Acta Astronaut., 81(2), 570-577.   DOI
43 Totaro, G. and Gurdal, Z. (2005), "Optimal design of composite lattice structures for aerospace application", Proceedings of European Conference for Aerospace Sciences (EUCASS), Moscow, Russia, July.
44 Totaro, G. and Gurdal, Z. (2009), "Optimal design of composite lattice shell structures for aerospace applications", Aerosp. Sci. Technol., 13(4), 157-164.   DOI
45 Vasiliev, V.V. and Rasin, A.F. (2006), "Anisogrid composite lattice structures for spacecraft and aircraft applications", Compos. Struct., 76(1), 182-189.   DOI
46 Vasiliev, V.V., Barynin, V.A. and Rasin, A.F. (2001), "Anisogrid lattice structures-survey of development and application", Compos. Struct., 54(2), 361-370.   DOI
47 Wodesenbet, E., Kidane, S. and Pang, S. (2003), "Optimization for buckling loads of grid stiffened composite panels", Compos. Struct., 60(2), 159-169.   DOI
48 Yang, C.C. (1974), "On vibrations of orthotropic conical shells", J. Sound Vib., 34(4), 552-555.   DOI
49 Ansari, R. and Torabi, J. (2016), "Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading", Compos. Part B: Eng., 95, 196-208.   DOI
50 Ansari, R. and Darvizeh, M. (2008), "Prediction of dynamic behavior of FGM shells under arbitrary boundary conditions", Compos. Struct., 85(4), 284-292.   DOI
51 Civalek, O. (2006a), "Free vibration analysis of composite conical shells using the discrete singular convolution algorithm", Steel Compos. Struct., Int. J., 6(4), 353-366.   DOI
52 Bakshi, K. and Chakravorty, D. (2013), "Relative static and dynamic performances of composite conoidal shell roofs", Steel Compos. Struct., Int. J., 15(4), 379-397.   DOI
53 Buragohain, M. and Velmurugan, R. (2011), "Study of filament wound grid-stiffened composite cylindrical structures", 93(2), 1031-1038.
54 Chang, C.H. (1981), "Vibrations of conical shells", Shock Vib. Digest., 13(6), 9-17.   DOI
55 Civalek, O. (2006b) "An efficient method for free vibration analysis of rotating truncated conical shells", Int. J. Press. Vess. Pip., 83(1), 1-12.   DOI