• Title/Summary/Keyword: fracture springs

Search Result 13, Processing Time 0.022 seconds

A Theological Study on the Karst Water

  • Kim, Choo-Yoon
    • Journal of the Speleological Society of Korea
    • /
    • no.65
    • /
    • pp.31-37
    • /
    • 2004
  • Karst water was defined as 'Water which fills the cavities of the earth continuously and is only subject to gravity and hydraulic pressure.' Karst springs are water outlets from karst-hydrologically active cavities in water-soluble rocks, whether they are on the surface or within the earth. Karst springs behave so differently that the general principles of classification for all springs can be applied to them with a few exceptions. Firstly, classification according to the outflow: perennial springs, periodic springs, rhythemically springs, episodically flowing spring. Secondly, classification according to geologic and tectonic conditions: bedding springs, fracture springs, overflow spring, ascending spring.

The Distribution of Geothermal Gradient at Icheon Hot Spring Area (이천온천의 지하온도 분포)

  • Lee, Chol-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.621-625
    • /
    • 2008
  • There are nine hot spring wells at Icheon hot spring area, hot springs are pumped by submersible motor. Drilling depths of hot spring wells is about 166-294 m, piezometric heads of hot springs is about 50 m below the surface. The geothermal gradient of SB-2 is about $64.00^{\circ}C$/km from the surface to depth within 300 m which is the highest value, that of SB-1 is about $45^{\circ}C$/km which is the lowest value. In addition, the average geothermal gradient of the region is calculated at approximately $54.28^{\circ}C$/km. However, it is analysed that this area has highly irregular temperature distribution because the groundwater penetrated to the depth of 720 m through the fracture rise to the surface according to the results of the data after drilling well to the depth of 996 m.

  • PDF

Failure Analysis of SCM435 Bolt for Fixing Automotive Air Brake Spring (자동차 에어 브레이크 스프링 고정용 SCM435 볼트의 파손 해석)

  • Yun, Seo-Hyun;Kim, Min-Heon;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.73-81
    • /
    • 2020
  • This study analyzed the causes of failure of SCM435 bolts that fix the springs of automobile air brakes that have been fractured during use. The cause of failure was analyzed using SEM, EDS, metallogical microscope and Vickers hardness tester. In the fracture, the ratchet mark began at the outer boundary of crack origin, and the grains at crack origin were found to have clear intergranular corrosion. One SCM435 bolt was subjected to a stress of 398 MPa, it's a stress of about 80% of the fatigue limit. As a result of such a large applied stress, cracks occurred at the corrosion origin and were fractured. In order to prevent the SCM435 bolt from fracture, it is necessary to use the correct composition, the accuracy of heat treatment, preventing damage by external impact, preventing corrosion of the damage part by moisture, and introduction a compressive residual stress by peening.

Damage Analysis of Leaf Spring for Transport Utility Vehicles (운송 차량용 판 스프링의 파손 해석)

  • Kim, Tae-Song;Kang, Seok-Hee;Kwon, Yung-Kug;Yun, Seo-Hyun;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1047-1053
    • /
    • 2022
  • The leaf spring for a truck absorbs shocks or vibrations from the road surface while driving with the elastic force of the material and prevents the shock from being transmitted to the vehicle body. It is subjected to cyclic stress, and fatigue fracture occurs frequently. This study analyzes fractured leaf spring from a 25 ton truck that has been operating for about a year. In the fractured portion, which is the origin of crack, inclusions were observed, and fatigue failure was caused by cyclic stress. In the stress calculation and FE analysis, the stress at the center of the leaf spring was obtained to be 54~65% of the yield strength of the base material and damaged material. It is most important to prevent the mixing of impurities in the steel manufacturing for leaf springs. The large stress portion of the leaf spring needs to introduce compressive residual stress by peening etc.

Implant supported over denture with O-ring abutment (O-ring abutment를 이용한 Implant over denture의 제작)

  • Lee, Sung-Uck;Lee, Jung-Hwan;Park, Hyo-Ryun
    • Journal of Technologic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.209-216
    • /
    • 2004
  • The purpose of this study is to introduce how to make implant supported over denture with Oring. Many kinds of attachments have used to dental restorations. The application of attachment has widely increased implant fixed prosthesis and implant supported over denture. In order that implant supported over denture have properly retention, generally used O-ring, magnetic, bar attachment. O-ring give us an advantage that is required more minimum vertical dimension than bar-type and easily replace with new part. When we make these prosthesis using O-ring, Bar, Ball attachment, we should following procedures. Strong occlusion force leads to fracture of over denture because part of functional mechanism as implant abutment or attachment is spaced. Clips are regularly activated. O-ring and springs are changed every year. The pattern of resorption should be carefully monitored and compensated for by relining procedures. If the over denture appears to rest on the bar or the ball attachments, relining should be performed and clips/caps should be changed.

  • PDF

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.5-14
    • /
    • 1999
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

Modal Analysis of a Rotating Packet Blade System having a crack (한 개의 크랙을 가진 회전하는 패킷 블레이드 시스템의 진동해석)

  • Kwon, Seung-Min;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.266-271
    • /
    • 2009
  • A modeling method for the modal analysis of a multi-packet blade system having a crack undergoing rotational motion is presented in this paper. Each blade is assumed as a slender cantilever beam. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid deformation variables are employed to derive the equations of motion. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters related to the angular speed, the depth and location of a crack on the modal characteristics of the system are investigated with some numerical examples.

  • PDF

Multicracks identification in beams based on moving harmonic excitation

  • Chouiyakh, Hajar;Azrar, Lahcen;Alnefaie, Khaled;Akourri, Omar
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1087-1107
    • /
    • 2016
  • A method of damage detection based on the moving harmonic excitation and continuous wavelet transforms is presented. The applied excitation is used as a moving actuator and its frequency and speed parameters can be adjusted for an amplified response. The continuous wavelet transforms, CWT, is used for cracks detection based on the resulting amplified signal. It is demonstrated that this identification procedure is largely better than the classical ones based on eigenfrequencies or on the eigenmodes wavelet transformed. For vibration responses, free and forced vibration analyses of multi-cracked beams are investigated based on both analytical and numerical methodological approaches. Cracks are modeled through rotational springs whose compliances are evaluated using linear elastic fracture mechanics. Based on the obtained forced responses, multi-cracks positions are accurately identified and the CWT identification can be highly improved by adjusting the frequency and the speed excitation parameters.

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.9-20
    • /
    • 2000
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

Evaluation of spring shape effect on the nuclear fuel fretting using worn area (핵연료 프레팅 마멸에서 마멸면적을 이용한 스프링 형상 영향 평가)

  • Lee Young-Ho;Kim Hyung-Kyu;Jung Youn-Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.313-323
    • /
    • 2003
  • The sliding wear behaviors of Zircaloy-4 nuclear fuel rod were investigated using two support springs with convex and concave shapes in room temperature air and water. The main focus is to compare the wear behavior of various test variables such as slip amplitude, environment, contact contours with different spring shape and a number of cycles. The results indicated that wear volume and maximum wear depth increased with slip amplitude in both air and water, but their trends tended to change according to the spring shapes and test environments. In air condition, the wear volume was controlled by wear debris behavior generated on worn surface. As a result, final wear volume and maximum wear depth decreased if a ratio of protruded wear volume to worn area $(D_p)$ would be saturated to specific value. This is because wear particle layer could accommodate large strain by accumulating and transforming wear particle layer. However, in water condition, metal-to metal contact was more dominant and wear volume was greatly affected by changed mechanical behavior between contact surfaces since wear debris should be generated after repeated plastic deformation and fracture. After wear test, worn surfaces were examined using optical microscope and SEM and details of wear mechanism were discussed using a ratio of wear volume to worn area $(D_e)$ at each test condition.

  • PDF