• Title/Summary/Keyword: fractional order differential equations

Search Result 49, Processing Time 0.018 seconds

A STUDY OF A WEAK SOLUTION OF A DIFFUSION PROBLEM FOR A TEMPORAL FRACTIONAL DIFFERENTIAL EQUATION

  • Anakira, Nidal;Chebana, Zinouba;Oussaeif, Taki-Eddine;Batiha, Iqbal M.;Ouannas, Adel
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.679-689
    • /
    • 2022
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solution for a class of initial boundary value problems with Dirichlet condition in regard to a category of fractional-order partial differential equations. The results are established by a method based on the theorem of Lax Milligram.

CAPUTO-FABRIZIO FRACTIONAL HYBRID DIFFERENTIAL EQUATIONS VIA NEW DHAGE ITERATION METHOD

  • NADIA BENKHETTOU;ABDELKRIM SALIM;JAMAL EDDINE LAZREG;SAID ABBAS;MOUFFAK BENCHOHRA
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.3_4
    • /
    • pp.211-222
    • /
    • 2023
  • In this paper, we study the following hybrid Caputo-Fabrizio fractional differential equation: 𝐶𝓕α𝕯θϑ [ω(ϑ) - 𝕱(ϑ, ω(ϑ))] = 𝕲(ϑ, ω(ϑ)), ϑ ∈ 𝕵 := [a, b], ω(α) = 𝜑α ∈ ℝ, The result is based on a Dhage fixed point theorem in Banach algebra. Further, an example is provided for the justification of our main result.

COLLOCATION APPROXIMATIONS FOR INTEGRO-DIFFERENTIAL EQUATIONS

  • Choi, Moon-Ja
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.35-51
    • /
    • 1993
  • This paper concerns collocation methods for integro-differential equations in which memory kernels have a singularity at t = 0. There has been extensive research in recent years on Volterra integral and integro-differential equations for physical systems with memory effects in which the stabilty and asymtotic stability of solutionsl have been the main interest. We will study a class of hereditary equations with singular kernels which interpolate between well known model equations as the order of singularity varies. We are also concerned with the smoothing effect of singular kernels, but we use energy methods and our results involve fractional time in fixed spatial norms. Galerkin methods for our models was studied and existence, uniqueness and stability results was obtained in [4]. Our major goal is to study collocation methods.

  • PDF

CERTAIN GRONWALL TYPE INEQUALITIES ASSOCIATED WITH RIEMANN-LIOUVILLE k- AND HADAMARD k-FRACTIONAL DERIVATIVES AND THEIR APPLICATIONS

  • Nisar, Kottakkaran Sooppy;Rahman, Gauhar;Choi, Junesang;Mubeen, Shahid;Arshad, Muhammad
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.249-263
    • /
    • 2018
  • We aim to establish certain Gronwall type inequalities associated with Riemann-Liouville k- and Hadamard k-fractional derivatives. The results presented here are sure to be new and potentially useful, in particular, in analyzing dependence solutions of certain k-fractional differential equations of arbitrary real order with initial conditions. Some interesting special cases of our main results are also considered.

EXISTENCE UNIQUENESS AND STABILITY OF NONLOCAL NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH RANDOM IMPULSES AND POISSON JUMPS

  • CHALISHAJAR, DIMPLEKUMAR;RAMKUMAR, K.;RAVIKUMAR, K.;COX, EOFF
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.107-122
    • /
    • 2022
  • This manuscript aims to investigate the existence, uniqueness, and stability of non-local random impulsive neutral stochastic differential time delay equations (NRINSDEs) with Poisson jumps. First, we prove the existence of mild solutions to this equation using the Banach fixed point theorem. Next, we demonstrate the stability via continuous dependence initial value. Our study extends the work of Wang, and Wu [16] where the time delay is addressed by the prescribed phase space 𝓑 (defined in Section 3). To illustrate the theory, we also provide an example of our methods. Using our results, one could investigate the controllability of random impulsive neutral stochastic differential equations with finite/infinite states. Moreover, one could extend this study to analyze the controllability of fractional-order of NRINSDEs with Poisson jumps as well.

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

Discrimination and bifurcation analysis of tumor immune interaction in fractional form

  • Taj, Muhammad;Khadimallah, Mohamed A.;Hussain, Muzamal;Rashid, Yahya;Ishaque, Waqas;Mahmoud, S.R.;Din, Qamar;Alwabli, Afaf S.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.359-371
    • /
    • 2021
  • A tumor immune interaction is a main topic of interest in the last couple of decades because majority of human population suffered by tumor, formed by the abnormal growth of cells and is continuously interacted with the immune system. Because of its wide range of applications, many researchers have modeled this tumor immune interaction in the form of ordinary, delay and fractional order differential equations as the majority of biological models have a long range temporal memory. So in the present work, tumor immune interaction in fractional form provides an excellent tool for the description of memory and hereditary properties of inter and intra cells. So the interaction between effector-cells, tumor cells and interleukin-2 (IL-2) are modeled by using the definition of Caputo fractional order derivative that provides the system with long-time memory and gives extra degree of freedom. Moreover, in order to achieve more efficient computational results of fractional-order system, a discretization process is performed to obtain its discrete counterpart. Furthermore, existence and local stability of fixed points are investigated for discrete model. Moreover, it is proved that two types of bifurcations such as Neimark-Sacker and flip bifurcations are studied. Finally, numerical examples are presented to support our analytical results.

A Study on Control of Mobile Cranes (이동 CRANE의 제어에 관한 연구)

  • Kim, Sang-Bong;Shin, Min-Saeng;Kim, Hwan-Seong;Jeong, Yong-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.47-56
    • /
    • 1991
  • The specifications needed for the mobile cranes are summarized as the following : 1) there may be not occured the oscillation of the cargo at unloading point. 2)the required time from departure point to destination point may be as short as possible. 3) there may be not a collapse of cargo caused by the oscillation in the course that the crago is mobilling. In this paper, the linear fractional transformation method is adopted as a method in order to improve the above mentioned problems. A design method of servo system is developed by modifying Davison's method for the case that the homogeneous differential equations of reference input and disturbance are different types. The real time control of a mobile crane system is implemented by 16bits microcomputer with A/D and D/A converters to illustrate the application of the adopted method. The experimental results for the three types of the design methods; linear fractional transformation method, servo system design method and optimal control method are shown for the comparison.

  • PDF

Design of robust servo systems and application to control of training simulator for radio-controlled helicopter (강인한 서보계설계와 R/C헬리콥터 트레이닝 시뮬레이터 제어에의 응용)

  • 김상봉;박순실
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.497-506
    • /
    • 1991
  • In this paper, a new construction for training simulator of R/C helicopter based on two types of servo controller is proposed. Two modified algorithms (algorithm I and II) for servo controller design are presented. Algorithm I is developed by adopting Davison's method in the case that the expressions for the homogeneous differential equations of reference input and disturbance are different types, and algorithm II is done by considering error weighting function for the servo controller of algorithm I . The linear fractional transformation method is incorporated in both design methods in order to assign the closed loop poles of the servo system in a specified region. The helicopter simulator is composed by the gimbals with two freedom of rolling and pitching. The reliability and validity for the design methods of the proposed servo controller are investigated through the practical experiment for the simulator by using 16bits micro-computer with A/D and D/A converters. It can be observered from the experimental results that the proposed servo controller is applicable to practical plants since the simulator is robust for the arbitrary disturbance and it follows to the given reference input without significant steady state error.