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CERTAIN GRONWALL TYPE INEQUALITIES ASSOCIATED

WITH RIEMANN-LIOUVILLE k- AND HADAMARD

k-FRACTIONAL DERIVATIVES AND THEIR APPLICATIONS

Kottakkaran Sooppy Nisar, Gauhar Rahman, Junesang Choi∗,
Shahid Mubeen, and Muhammad Arshad

Abstract. We aim to establish certain Gronwall type inequalities asso-

ciated with Riemann-Liouville k- and Hadamard k-fractional derivatives.
The results presented here are sure to be new and potentially useful, in

particular, in analyzing dependence solutions of certain k-fractional dif-

ferential equations of arbitrary real order with initial conditions. Some
interesting special cases of our main results are also considered.

1. Introduction and preliminaries

Fractional calculus which is calculus of integrals and derivatives of any arbi-
trary real or complex order has gained remarkable popularity and importance
during the last four decades or so, due mainly to its demonstrated applications
in diverse and widespread fields ranging from natural sciences to social sciences.
(see, e.g., [2, 5, 9, 10, 12, 15, 17, 18] and references therein). Beginning with the
classical Riemann-Liouville fractional integral and derivative operators, a large
number of fractional integral and derivative operators and their generalizations
have been presented. Also, many authors have established a variety of inequal-
ities for those fractional integral and derivative operators, some of which have
turned out to be useful in analyzing solutions of certain fractional integral and
differential equations.

In this paper, we establish certain Gronwall type inequalities associated with
Riemann-Liouville k- and Hadamard k-fractional derivatives. The results pre-
sented here are used in analyzing dependence solutions of certain k-fractional
differential equations of arbitrary real order with initial conditions. Some in-
teresting special cases of our main results are also considered. We recall the
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classical Gronwall inequality which is asserted by the following theorem (see,
e.g., [4, pp. 14-15]).

Theorem 1.1. If

z(t) ≤ y(t) +

t∫
t0

k(ρ)x(ρ) dρ (t ∈ [t0, T )), (1)

where the functions z(t), y(t), k(t) and x(t) are continuous on [t0, T ), T ≤ +∞,
and k(t) ≥ 0, then the function z(t) satisfies the following inequality:

z(t) ≤ y(t) +

t∫
t0

k(ρ)x(ρ) exp

( t∫
ρ

k(τ) dτ

)
dρ (t ∈ [t0, T )). (2)

Moreover, if x(t) is a non-decreasing function on [t0, T ), then the following
inequality holds:

z(t) ≤ y(t)− x(t) + x(t) exp

( t∫
t0

k(τ) dτ

)
(t ∈ [t0, T )). (3)

The Gronwall inequality, which is often referred to as Gronwall-Bellman-Raid
inequality, has been generalized and used in different contexts (see, e.g., [1, 14,
13]). We, also, recall some definitions of fractional integrals and derivatives
by beginning with the Riemann-Liouville fractional integral operator, among
various fractional integral operators, which has been extensively investigated.
For more details, we refer the reader, for example, to the works [8, 6, 9, 15] and
the references therein.

Definition 1. (i) The Riemann-Liouville fractional integral Iαf of order
α ∈ C (<(α) > 0) is defined by

(Iαf) (x) :=
1

Γ(α)

x∫
0

(x− τ)α−1 f(τ) dτ (x > 0), (4)

where Γ(α) is the familiar Gamma function (see, e.g., [19, Section 1.1]).
(ii) The Riemann-Liouville fractional derivative Dαf of α ∈ C (<(α) ≥ 0)

is defined by

(Dαf) (x) :=

(
d

dx

)n (
In−αf

)
(x)

=
1

Γ(n− α)

(
d

dx

)n x∫
0

f(τ) dτ

(x− τ)α−n+1

(5)

(n = [<(α)] + 1; x > 0).
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(iii) The Hadamard fractional integral HD
µ
1,xf of order µ > 0 is defined by

(
HD

µ
1,xf

)
(x) :=

1

Γ(µ)

x∫
1

(
ln
x

τ

)µ−1

f(τ)
dτ

τ
(x > 1). (6)

(iv) The Hadamard fractional derivative HD
µ
1,xf of order µ > 0 is defined

by

(
HD

µ
1,xf

)
(x) =

1

Γ(n− µ)

(
x
d

dx

)n x∫
1

(
ln
x

τ

)n−µ−1

f(τ)
dτ

τ
(7)

(n = [µ] + 1; x > 1).

Here and in the following, let C, R, R+, N, and Z−0 be the sets of com-
plex numbers, real numbers, positive real numbers, positive integers, and non-
positive integers, respectively.

Dı́az and Pariguan [7] introduced k-gamma function Γk defined by

Γk(z) =

∫ ∞
0

e−
tk

k tz−1 dt
(
<(z) > 0; k ∈ R+

)
, (8)

which has the following relationships:

Γk(z + k) = z Γk(z), Γk(k) = 1 (9)

and

Γk(γ) = k
γ
k−1Γ

(γ
k

)
. (10)

Also, k-beta function Bk(α, β) is defined by

Bk(α, β) =


1

k

∫ 1

0

t
α
k−1 (1− t)

β
k−1 dt (min{<(α), <(β)} > 0)

Γk(α) Γk(β)

Γk(α+ β)

(
α, β ∈ C \ kZ−0

)
,

(11)

where kZ−0 denotes the set of k-multiples of the elements in Z−0 .
By using the k-gamma function Γk, Mubeen and Habibullah [11] introduced

the following Riemann-Liouville k-fractional integral of order α ∈ R+:

(Iαk f) (x) =
1

kΓk(α)

x∫
0

(x− τ)
α
k−1f(τ)dτ. (12)

We define Hadamard k-fractional integral and derivative (see also [20]) as in
the following definition.
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Definition 2. (i) Hadamard k-fractional integral of order µ ∈ R+ is de-
fined by

(
k
HI

µ
1,xf

)
(x) =

1

kΓk(µ)

x∫
1

(
ln
x

τ

)µ
k−1

f(τ)
dτ

τ
(x > 1). (13)

(ii) Hadamard k-fractional derivative of order µ ∈ R+ is defined by

(
k
HD

µ
1,xf

)
(x) =

1

kΓk(n− µ)

(
x
d

dx

)n x∫
1

(
ln
x

τ

)n−µ
k −1

f(τ)
dτ

τ
(14)

(n = [µ] + 1; x > 1).

2. Generalized Gronwall k-fractional integral inequalities

Here, we establish Gronwall type inequalities for the Riemann-Liouville k-
fractional integral in (12) and the Hadamard k-fractional integral in (13) which
are the generalized forms of the Gronwall inequality.

Theorem 2.1. Let k, λ ∈ R+. Also, let h and u be non-negative and locally
integrable functions defined on [0, X) with X ≤ +∞. Further, let φ(x) be a non-
negative, non-decreasing, and continuous function on [0, X) which is bounded
on [0, X), that is, φ(x) ≤ M for all x ∈ [0, X) and some M ∈ R+. Suppose
that the functions h, u, and φ satisfy the following inequality:

u(x) ≤ h(x) + k φ(x)

x∫
0

(x− ρ)
λ
k−1 u(ρ) dρ (x ∈ [0, X)). (15)

Then

u(x) ≤ h(x) +

∞∑
n=1

{k φ(x)Γk(λ)}n

Γk(nλ)

x∫
0

(x− ρ)n
λ
k−1h(ρ) dρ (x ∈ [0, X)). (16)

Proof. We can choose a function β : [0, X)→ R+ ∪ {0} satisfying

β(x)u(x) = k φ(x)

x∫
0

(x− ρ)
λ
k−1 u(ρ) dρ (x ∈ [0, X)).

We find from (15) that

u(x) ≤ h(x) + β(x)u(x),

which, upon repeating n times, yields

u(x) ≤
n−1∑
m=0

{β(x)}m h(x) + {β(x)}n u(x) (n ∈ N). (17)
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We claim that

{β(x)}n u(x) ≤ kn {φ(x)Γk(λ)}n

Γk(nλ)

x∫
0

(x− ρ)n
λ
k−1 u(ρ) dρ (18)

(x ∈ [0, X); n ∈ N)

for any non-negative and locally integrable function u on [0, X).
We proceed to prove (18) by using mathematical induction on n ∈ N. (18)

holds trivially for n = 1. Assume that (18) holds for some n ∈ N. Then we have

{β(x)}n+1 u(x) = β(x) {β(x)}n u(x)

≤ φ(x)

∫ x

0

(x− ρ)
λ
k−1

{∫ ρ

0

kn {φ(ρ)Γk(λ)}n

Γk(nλ)
(ρ− τ)n

λ
k−1 u(τ) dτ

}
dρ.

Since φ is non-negative and non-decreasing on [0, X), we obtain

{β(x)}n+1 u(x)

≤ {φ(x)}n+1
∫ x

0

(x− ρ)
λ
k−1

{∫ ρ

0

{Γk(λ)}n

kΓk(nλ)
(ρ− τ)n

λ
k−1 u(τ) dτ

}
dρ.

Changing the order of integration, we get

{β(x)}n+1 u(x) ≤ {φ(x)}n+1
kn+1 {Γk(λ)}n

Γk(nλ)

∫ x

0

I(x, τ)u(τ) dτ, (19)

where

I(x, τ) :=
1

k

∫ x

τ

(x− ρ)
λ
k−1 (ρ− τ)n

λ
k−1 dρ.

Changing the variable by letting

w =
ρ− τ
x− τ

,

we find

I(x, τ) = (x− τ)(n+1)λk−1 1

k

∫ 1

0

(1− w)
λ
k−1 wn

λ
k−1 dw.

Using (11), we have

I(x, τ) = (x− τ)(n+1)λk−1 Γk(λ) Γk(nλ)

Γk((n+ 1)λ)
. (20)

Applying (20) to (19), we obtain

{β(x)}n+1 u(x) ≤ {φ(x)}n+1
kn+1 {Γk(λ)}n+1

Γk((n+ 1)λ)

∫ x

0

(x− τ)(n+1)λk−1 u(τ) dτ,

which proves (18) for n+ 1. Therefore, by the principle of mathematical induc-
tion, (18) holds for all n ∈ N.

Also, we claim that

lim
n→∞

{β(x)}n u(x) = 0 (21)
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for each x ∈ [0, X). Indeed, since n → ∞, we assume that n λ
k − 1 > 0. Then

we have (x− ρ)n
λ
k−1 ≤ xnλk−1 for ρ ∈ [0, x]. Since u is non-negative and locally

integrable on [0, X), u is integrable on [0, x] (x ∈ [0, X)). So, u is bounded on
[0, x], say, u(ρ) ≤ L for some L ∈ R+ and all ρ ∈ [0, x]. Considering all these
accounts into the right-hand side of (18), we have

{β(x)}n u(x) ≤
L
(
kM x

λ
k

)n
{Γk(λ)}n

Γk(nλ)
.

By using (10), we get

{β(x)}n u(x) ≤ k L
{
M x

λ
k Γ

(
λ

k

)}n
1

Γ
(
nλ
k

) . (22)

Applying the following asymptotic formula (see, e.g., [19, p. 6, Eq.(33)]):

Γ(x+ 1) ∼
(x
e

)x √
2πx

(
x→∞; x ∈ R+

)
(23)

to the right-hand side of (22), we obtain

k L

{
M x

λ
k Γ

(
λ

k

)}n
1

Γ
(
nλ
k

) ∼ L · (kλ
2π

) 1
2 pn

nn
λ
k−

1
2

, (24)

where

p := M

(
xek

λ

)λ
k

Γ

(
λ

k

)
.

Since p, λ/k ∈ R+ are fixed, it is easy to see that

L ·
(
kλ

2π

) 1
2 pn

nn
λ
k−

1
2

→ 0 (n→∞). (25)

Considering (24) and (25) in (22), we prove (21).

Finally, taking the limit on both sides of (17) as n→∞ with the aid of (21)
and applying (18) with u replaced by h to the resulting inequality, we obtain
(16). This completes the proof. �

We consider two special cases of the result in Theorem 2.1. First, by setting
φ(x) = b, where b ∈ R+ ∪ {0} is a constant, in Theorem 2.1, we have the
following assertion in Corollary 2.2.

Corollary 2.2. Let k, λ ∈ R+ and b ∈ R+ ∪ {0}. Also, let h and u be non-
negative and locally integrable functions defined on [0, X) with X ≤ +∞. Sup-
pose that the functions h and u satisfy the following inequality:

u(x) ≤ h(x) + k b

x∫
0

(x− ρ)
λ
k−1 u(ρ) dρ (x ∈ [0, X)). (26)
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Then

u(x) ≤ h(x) +

∞∑
n=1

{k bΓk(λ)}n

Γk(nλ)

x∫
0

(x− ρ)n
λ
k−1h(ρ) dρ (x ∈ [0, X)). (27)

Among many generalizations of the Mittag-Leffler function, one of them is
recalled (see [21, 22]):

Eλ,β(z) =

∞∑
n=0

zn

Γ(λn+ β)
(λ, β ∈ C; <(λ) > 0), (28)

which is further generalized and called k-Mittag-Leffler function as follows:

Ek,λ,β(z) =

∞∑
n=0

zn

Γk(λn+ β)

(
λ, β ∈ C; <(λ) > 0; k ∈ R+

)
. (29)

Corollary 2.3. Let k, λ ∈ R+. Also, let u be non-negative and locally integrable
function defined on [0, X) with X ≤ +∞ and h be non-negative, non-decreasing
and locally integrable function on [0, X). Further, let φ(x) be a non-negative,
non-decreasing, and continuous function on [0, X) which is bounded on [0, X),
that is, φ(x) ≤ M for all x ∈ [0, X) and some M ∈ R+. Suppose that the
functions h, u, and φ satisfy the following inequality:

u(x) ≤ h(x) + k φ(x)

x∫
0

(x− ρ)
λ
k−1 u(ρ) dρ (x ∈ [0, X)). (30)

Then

u(x) ≤
{

1− k + k Ek,λ,k

(
k Γk(λ)φ(x)x

λ
k

)}
h(x). (31)

Proof. Since h is non-decreasing on [0, X), h(ρ) ≤ h(x) for all ρ ∈ [0, x] ⊆
[0, X). Then we have

x∫
0

(x− ρ)n
λ
k−1h(ρ) dρ ≤ h(x)

x∫
0

(x− ρ)n
λ
k−1 dρ =

k

nλ
h(x)x

nλ
k . (32)

Applying (32) to (16) and using (9), we obtain the desired inequality (31).
�

Remark 1. The particular case of the result in Corollary 2.3 when k = 1 is
easily seen to reduce to the inequality in [23, Corollary 2].

Theorem 2.4. Let k, λ ∈ R+. Also, let h and u be non-negative and locally
integrable functions defined on [1, X) with X ≤ +∞. Further, let φ(x) be a non-
negative, non-decreasing, and continuous function on [0, X) which is bounded
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on [1, X), that is, φ(x) ≤ M for all x ∈ [1, X) and some M ∈ R+. Suppose
that the functions h, u, and φ satisfy the following inequality:

u(x) ≤ h(x) + k φ(x)

x∫
1

(
ln
x

ρ

)λ
k−1

u(ρ)
dρ

ρ
(x ∈ [1, X)). (33)

Then

u(x) ≤ h(x) +

∞∑
n=1

{k φ(x)Γk(λ)}n

Γk(nλ)

x∫
1

(
ln
x

ρ

)nλk−1

h(ρ)
dρ

ρ
(x ∈ [1, X)). (34)

Proof. The proof would run parallel to that of Theorem 2.4. We omit the
details.

�

Corollary 2.5. Let k, λ ∈ R+. Also, let u be non-negative and locally inte-
grable functions defined on [1, X) with X ≤ +∞ and h be non-negative, non-
decreasing and locally integrable functions defined on [1, X). Further, let φ(x)
be a non-negative, non-decreasing, and continuous function on [1, X) which is
bounded on [1, X), that is, φ(x) ≤ M for all x ∈ [1, X) and some M ∈ R+.
Suppose that the functions h, u, and φ satisfy the following inequality:

u(x) ≤ h(x) + k φ(x)

x∫
1

(
ln
x

ρ

)λ
k−1

u(ρ)
dρ

ρ
(x ∈ [1, X)).

Then

u(x) ≤
{

1− k + k Ek,λ,k

(
k Γk(λ)φ(x)(lnx)

λ
k

)}
h(x). (35)

Proof. A similar argument as in the proof of Corollary 2.3 will establish the
result here. We omit the details.

�

3. Application to some dependence solutions
of k-fractional differential equations

Many researchers have been devoted to study dependence solutions of Riemann-
Liouville type or Caputo type fractional differential equations of arbitrary order
with some initial conditions, while a few have studied similar problems with
Hadamard type fractional derivatives. In this sequel, we show that our results
presented in the previous section are useful in analyzing dependence solutions
of certain k-fractional differential equations of arbitrary real order with initial
conditions. Here, we consider the following system of initial value problem (see
[15]):

Dα
k y(x) = f(x, y(x)) (36)
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with

Dα−1
k y(x)

∣∣
t=0

= η, (37)

where 0 < α < 1, 0 ≤ x < X (X ≤ +∞), f : [0, X) × R → R is a function,
and Dα

k denotes Riemann-Liouville k-fractional derivative operator of order α.
Also, we consider the following system of initial value problem (see [9]):

k
HD

α
1,xy(x) = f(x, y(x)), (38)

with

k
HD

α−1
1,x y(x)

∣∣
x=1

= µ, (39)

where 0 < α < 1, 1 ≤ x < X (X ≤ +∞), f : [1, X)×R→ R and k
HD

α
1,x denotes

Hadamard k-fractional derivative operator of order α.
The existence and uniqueness of the initial value problems given as in (36) and

(38) with, respectively, Riemann-Liouville and Hadamard fractional derivative
operators of order α ∈ R+ have been investigated (see, e.g., [9, 15]). We take a
function

y(x) =
η

kΓk(α)
x
α
k−1 +

1

kΓk(α)

x∫
0

(x− ρ)
α
k−1f(ρ, y(ρ)) dρ, (40)

which is a solution of the system (36) with (37).
It is noted that, the case k = 1 in (40) is equivalent to the initial value

problem (36) with (37) given as in [15, pp. 127-128].

Now, we give our results as in the following theorems and corollaries.

Theorem 3.1. Let k, α, δ ∈ R+ with 0 < α − δ < α ≤ 1. Also, let f be a
continuous function satisfying the following Lipschitz condition:

|f(x, y(x))− f(x, z(x))| ≤ L |y(x)− z(x)| (0 ≤ x < X), (41)

where L ∈ R+ is a constant which is independent of the variables x, y(x),
z(x) ∈ R. Further, let y and z be the solutions of (36) with (37) and

Dα−δ
k z(x) = f(x, z(x)) (42)

with

Dα−δ−1
k z(x)

∣∣
x=0

= ζ, (43)

respectively. Then, for 0 < x ≤ X, we have

|z(x)− y(x)| ≤ A(x; k, α, δ) +

∞∑
n=1

{
LΓk(α− δ)
k Γk(α)

}n

× 1

Γk(n(α− δ))

x∫
0

(x− ρ)
n(α−δ)

k −1A(ρ; k, α, δ) dρ,

(44)
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where

A(x; k, α, δ) :=
1

k

∣∣∣∣ ζ

Γk(α− δ)
x
α−δ
k −1 − η

Γk(α)
x
α
k−1

∣∣∣∣
+ ‖f‖∞

∣∣∣∣ 1

Γk(α− δ)
− 1

Γk(α)

∣∣∣∣ xα−δ
k +

‖f‖∞
Γk(α)

(
x
α−δ
k

α− δ
+
x
α
k

α

)
(45)

and

‖f‖∞ := sup
0≤ρ≤x

|f(ρ, y(ρ))|.

Proof. In view of (40), the solutions of the initial value problems (36) with (37)
and (42) with (43) are given, respectively, by

y(x) =
η

kΓk(α)
x
α
k−1 +

1

kΓk(α)

x∫
0

(x− ρ)
α
k−1f(ρ, y(ρ)) dρ (46)

and

z(x) =
ζ

kΓk(α− δ)
x
α−δ
k −1 +

1

kΓk(α− δ)

x∫
0

(x− ρ)
α−δ
k −1f(ρ, z(ρ)) dρ. (47)

We find from (46) and (47) that

|z(x)− y(x)| ≤ 1

k

∣∣∣∣ ζ

Γk(α− δ)
x
α−δ
k −1 − η

Γk(α)
x
α
k−1

∣∣∣∣
+ |R1(x; k, α, δ)|+ |R2(x; k, α, δ)|+ |R3(x; k, α, δ)| ,

(48)

where

R1(x; k, α, δ) :=
1

kΓk(α− δ)

x∫
0

(x− ρ)
α−δ
k −1f(ρ, z(ρ)) dρ

− 1

kΓk(α)

x∫
0

(x− ρ)
α−δ
k −1f(ρ, z(ρ)) dρ,

R2(x; k, α, δ) :=
1

kΓk(α)

x∫
0

(x− ρ)
α−δ
k −1f(ρ, z(ρ)) dρ

− 1

kΓk(α)

x∫
0

(x− ρ)
α−δ
k −1f(ρ, y(ρ))dρ



GRONWALL TYPE INEQUALITIES 259

and

R3(x; k, α, δ) :=
1

kΓk(α)

x∫
0

(x− ρ)
α−δ
k −1f(ρ, y(ρ)) dρ

− 1

kΓk(α)

x∫
0

(x− ρ)
α
k−1f(ρ, y(ρ)) dρ.

Using the conditions given in this theorem, we obtain

|R1(x; k, α, δ)| ≤
∣∣∣∣ 1

Γk(α− δ)
− 1

Γk(α)

∣∣∣∣ ‖f‖∞ x
α−δ
k , (49)

|R2(x; k, α, δ)| ≤ L

k Γk(α)

x∫
0

(x− ρ)
α−δ
k −1 |z(ρ)− y(ρ)| dρ (50)

and

|R3(x; k, α, δ)| ≤ ‖f‖∞
Γk(α)

(
x
α−δ
k

α− δ
+
x
α
k

α

)
. (51)

Applying (49), (50) and (51) to the inequality (49), we get

|z(x)− y(x)| ≤ A(x; k, α, δ) +
L

k Γk(α)

x∫
0

(x− ρ)
α−δ
k −1 |z(ρ)− y(ρ)| dρ. (52)

Using the result in Theorem 2.1 in the inequality (52), we get the desired result
(44). �

Corollary 3.2. Let k, α ∈ R+ with 0 < α ≤ 1. Also, let f be a continuous
function satisfying the following Lipschitz condition:

|f(x, y(x))− f(x, z(x))| ≤ L |y(x)− z(x)| (0 ≤ x < X), (53)

where L ∈ R+ is a constant which is independent of the variables x, y(x),
z(x) ∈ R. Further, let y and z be the solutions of (36) with (37) and

Dα
k z(x) = f(x, z(x)) (54)

with

Dα−1
k z(x)

∣∣
x=0

= ζ, (55)

respectively. Then, for 0 < x ≤ X, we have

|z(x)− y(x)| ≤
(

1

k
− 1

)
|ζ − η|
Γk(α)

x
α
k−1 + (1− k)

2 ‖f‖∞ x
α
k

Γk(α+ k)

+ |ζ − η|xαk−1 Γk
(
α
k

)
Γk(α)

Ek,αk ,
α
k

(
Lx

α
k

k

)
+ 2 ‖f‖∞ x

α
k
k Γk

(
α
k + 1

)
Γk (α+ k)

Ek,αk ,
α
k+1

(
Lx

α
k

k

)
,

(56)
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where Ek,α,β(·) is the k-Mittag-Leffler function in (29) and

‖f‖∞ := sup
0≤ρ≤x

|f(ρ, y(ρ))|.

In particular, for k = 1 and 0 < x ≤ X, we have

|z(x)− y(x)| ≤ |ζ − η|xα−1Eα,α (Lxα) + 2 ‖f‖∞ xαEα,α+1 (Lxα) , (57)

where Eα,β(·) is the Mittag-Leffler function in (28).

Proof. Setting δ = 0 in Theorem 3.1, after a simplification, we get the desired
result. We omit the details. �

Consider the fractional system as given in (38) with (39) in terms of Hadamard
k-fractional derivatives. In this regard, we define the following Volterra-type in-
tegral which satisfies (38) with (39):

y(x) =
µ

kΓk(α)
(lnx)

α
k−1

+
1

kΓk(α)

x∫
1

(
ln
x

ρ

)α
k−1

f(ρ, y(ρ))
dρ

ρ
, (58)

which, upon letting k → 1, yields the Volterra-type integral satisfying the sys-
tem with k = 1 to the initial value problem in [16].

Theorem 3.3. Let k, α, δ ∈ R+ with 0 < α − δ < α ≤ 1. Also, let f be a
continuous function satisfying the following Lipschitz condition:

|f(x, y(x))− f(x, z(x))| ≤ L |y(x)− z(x)| (1 ≤ x < X), (59)

where L ∈ R+ is a constant which is independent of the variables x, y(x),
z(x) ∈ R. Further, let y and z be the solutions of (38) with (39) and

k
HD

α−δ
1,x z(x) = f(x, z(x)) (60)

with

k
HD

α−δ−1
1,x z(x)

∣∣
x=1

= ν, (61)

respectively. Then, for 1 ≤ x < X, we have

|z(x)− y(x)| ≤B(x; k, α, δ) +

∞∑
n=1

{
LΓk(α−δ)
k Γk(α)

}n
Γk(n(α− δ))

×
x∫

1

(
ln
x

ρ

)n(α−δ)
k −1

B(ρ; k, α, δ))
dρ

ρ
,

(62)
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where

B(x; k, α, δ) :=
1

k

∣∣∣∣ ν

Γk(α− δ)
(lnx)

α−δ
k −1 − µ

Γk(α)
(lnx)

α
k−1

∣∣∣∣
+

1

α− δ

∣∣∣∣ 1

Γk(α− δ)
− 1

Γk(α)

∣∣∣∣ (lnx)
α−δ
k

+
‖f‖∞
Γk(α)

{
1

α− δ
(lnx)

α−δ
k +

1

α
(lnx)

α
k

}
and

‖f‖∞ := sup
0≤ρ≤x

|f(ρ, y(ρ))|.

Proof. The solutions of the initial value problems (38) with (39) and (60) with
(61) are given by

y(x) =
µ

kΓk(α)
(lnx)

α
k−1 +

1

kΓk(α)

x∫
1

(
ln
x

ρ

)α
k−1

f(ρ, y(ρ))
dρ

ρ

and

z(x) =
ν

kΓk(α− δ)
(lnx)

α−δ
k −1 +

1

kΓk(α− δ)

x∫
1

(
ln
x

ρ

)α−δ
k −1

f(ρ, z(ρ))
dρ

ρ
,

respectively. Similarly as in the proof of Theorem 3.1, we obtain

|z(x)− y(x)| ≤ B(x; k, α, δ) +
L

k Γk(α)

x∫
1

(
ln
x

ρ

)α−δ
k −1

|z(ρ)− y(ρ)| dρ
ρ
.

Finally, applying Theorem 2.4, we get the desired result. �

4. Concluding remarks

The main results presented here are further generalizations of the generalized
Gronwall type inequalities associated with Riemann-Liouville k- and Hadamard
k-fractional derivatives. Also, they are sure to be new and potentially useful.
Their special cases when k = 1 are seen to yield certain results similar to those
known Gronwall type inequalities for the Riemann-Liouville and Hadamard frac-
tional derivatives (cf., [16, 23]).
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