• Title/Summary/Keyword: fractional order

Search Result 446, Processing Time 0.019 seconds

Effect of the gravity on a nonlocal thermoelastic medium with a heat source using fractional derivative

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.591-597
    • /
    • 2024
  • The purpose of this paper is to depict the effect of gravity on a nonlocal thermoelastic medium with initial stress. The Lord-Shulman and Green-Lindsay theories with fractional derivative order serve as the foundation for the formulation of the fundamental equations for the problem. To address the problem and acquire the exact expressions of physical fields, appropriate non-dimensional variables and normal mode analysis are used. MATLAB software is used for numerical calculations. The projected outcomes in the presence and absence of the gravitational field, along with a nonlocal parameter, are compared. Additional comparisons are made for various fractional derivative order values. It is evident that the variation of physical variables is significantly influenced by the fractional derivative order, nonlocal parameter and gravity field.

Position Controller Implementation Using the Fractional Order Derivative (유리차수 미분을 이용한 위치제어기 구현)

  • Kang, Jung-Yoog;Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.185-190
    • /
    • 2019
  • This study aims to apply the mathematical method of fractional order derivatives to the controller that controls the system response. In general, the Laplace transform of the PID controller has an exponent of the integer order of s. The derivative of the fractional order has a fractional exponent of s when it is transformed by Laplace transform. Therefore, this controller proposes a design method with the result of discrete time conversion. Because controllers with fractional exponents of s are not easy to design. This controller is applied to a standard secondary system and its performance is examined. Then, it applies to solenoid valve which is widely used in industrial field. A Luenberger's observer was designed to estimate the disturbance state and the observed state was applied to the fractional order controller. As a result, uniform and precise control performance was obtained. It was confirmed that the position error of the steady state is within 0.1 [%] and the rising time is within about 0.03 [s].

FRACTIONAL CHEBYSHEV FINITE DIFFERENCE METHOD FOR SOLVING THE FRACTIONAL BVPS

  • Khader, M.M.;Hendy, A.S.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.299-309
    • /
    • 2013
  • In this paper, we introduce a new numerical technique which we call fractional Chebyshev finite difference method (FChFD). The algorithm is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. We tested this technique to solve numerically fractional BVPs. The proposed technique is based on using matrix operator expressions which applies to the differential terms. The operational matrix method is derived in our approach in order to approximate the fractional derivatives. This operational matrix method can be regarded as a non-uniform finite difference scheme. The error bound for the fractional derivatives is introduced. The fractional derivatives are presented in terms of Caputo sense. The application of the method to fractional BVPs leads to algebraic systems which can be solved by an appropriate method. Several numerical examples are provided to confirm the accuracy and the effectiveness of the proposed method.

FRACTIONAL HAMILTON-JACOBI EQUATION FOR THE OPTIMAL CONTROL OF NONRANDOM FRACTIONAL DYNAMICS WITH FRACTIONAL COST FUNCTION

  • Jumarie, Gyu
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.215-228
    • /
    • 2007
  • By using the variational calculus of fractional order, one derives a Hamilton-Jacobi equation and a Lagrangian variational approach to the optimal control of one-dimensional fractional dynamics with fractional cost function. It is shown that these two methods are equivalent, as a result of the Lagrange's characteristics method (a new approach) for solving non linear fractional partial differential equations. The key of this results is the fractional Taylor's series $f(x+h)=E_{\alpha}(h^{\alpha}D^{\alpha})f(x)$ where $E_{\alpha}(.)$ is the Mittag-Leffler function.

FRACTIONAL FIELD WITH STANDARD FRACTIONAL VECTOR CROSS PRODUCT

  • MANISHA M. KANKAREJ;JAI PRATAP SINGH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.811-819
    • /
    • 2023
  • In this research we have used the definition of standard fractional vector cross product to obtain fractional curl and fractional field of a standing wave, a travelling wave, a transverse wave, a vector field in xy plane, a complex vector field and an electric field. Fractional curl and fractional field for a complex order are also discussed. We have supported the study with calculation of impedance at γ = 0, 0 < γ < 1, γ = 1. The formula discussed in this paper are useful for study of polarization, reflection, impedance, boundary conditions where fractional solutions have applications.

SOME FAMILIES OF INFINITE SUMS DERIVED BY MEANS OF FRACTIONAL CALCULUS

  • Romero, Susana Salinas De;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.17 no.1
    • /
    • pp.135-146
    • /
    • 2001
  • Several families of infinite series were summed recently by means of certain operators of fractional calculus(that is, calculus of derivatives and integrals of any real or complex order). In the present sequel to this recent work, it is shown that much more general classes of infinite sums can be evaluated without using fractional calculus. Some other related results are also considered.

  • PDF

A NOTE ON LINEAR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

  • Choi, Sung Kyu;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.583-590
    • /
    • 2015
  • This paper deals with linear impulsive fractional differential equations involving the Caputo derivative with non-integer order q. We provide exact solutions of linear impulsive fractional differential equations with constant coefficient by mean of the Mittag-Leffler functions. Then we apply the exact solutions to improve impulsive integral inequalities with singularity.

ITERATED LEFT ABSTRACT FRACTIONAL LANDAU INEQUALITIES

  • ANASTASSIOU, GEORGE A.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.559-577
    • /
    • 2020
  • We present uniform and Lp left Caputo-Bochner abstract iterated fractional Landau inequalities over ℝ+. These estimate the size of second and third iterated left abstract fractional derivates of a Banach space valued function over ℝ+. We give an application when the basic fractional order is ${\frac{1}{2}}$.

STABILITY PROPERTIES IN IMPULSIVE DIFFERENTIAL SYSTEMS OF NON-INTEGER ORDER

  • Kang, Bowon;Koo, Namjip
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.127-147
    • /
    • 2019
  • In this paper we establish some new explicit solutions for impulsive linear fractional differential equations with impulses at fixed times, which provides a handy tool in deriving singular integral-sum inequalities and an impulsive fractional comparison principle. Thus we study the Mittag-Leffler stability of impulsive differential equations with the Caputo fractional derivative by using the impulsive fractional comparison principle and piecewise continuous functions of Lyapunov's method. Also, we give some examples to illustrate our results.

A GENERALIZED APPROACH OF FRACTIONAL FOURIER TRANSFORM TO STABILITY OF FRACTIONAL DIFFERENTIAL EQUATION

  • Mohanapriya, Arusamy;Sivakumar, Varudaraj;Prakash, Periasamy
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.749-763
    • /
    • 2021
  • This research article deals with the Mittag-Leffler-Hyers-Ulam stability of linear and impulsive fractional order differential equation which involves the Caputo derivative. The application of the generalized fractional Fourier transform method and fixed point theorem, evaluates the existence, uniqueness and stability of solution that are acquired for the proposed non-linear problems on Lizorkin space. Finally, examples are introduced to validate the outcomes of main result.