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FRACTIONAL FIELD WITH STANDARD FRACTIONAL

VECTOR CROSS PRODUCT

MANISHA M. KANKAREJ∗, JAI PRATAP SINGH

Abstract. In this research we have used the definition of standard frac-

tional vector cross product to obtain fractional curl and fractional field of
a standing wave, a travelling wave, a transverse wave, a vector field in x-

y plane, a complex vector field and an electric field. Fractional curl and

fractional field for a complex order are also discussed. We have supported
the study with calculation of impedance at γ = 0, 0 < γ < 1, γ = 1. The

formula discussed in this paper are useful for study of polarization, re-

flection, impedance, boundary conditions where fractional solutions have
applications.
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1. Introduction

In 1967, Crowe [2] laid the foundation of vector calculus which revolutionised
the study of applied mathematics. In the year 1967, Caputo [1] gave a definition
of fractional derivative, which has practical relevance, as this definition requires
integer order initial states to solve fractional differential equations; which other-
wise requires fractional order initial-states. Das [3], [4] gave details of fractional
calculus including fractional cross product and fractional curl. Mishra and Pat-
naik [9] applied fractional cross product in radiation characteristic. Tripathi and
Kim [8] defined some properties of fractional vector cross product in euclidean 3
space. Later in 2022, Kankarej and Singh, [6], [7] gave an alternative definition
of fractional cross product called standard fractional vector cross product and
derived its properties. They also studied the properties for a vector pair.
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This research gives insight to physics of various aspects of electromagnetic
wave propagation. In this paper we see, how fractional curl and field are cal-
culated for different forms of electromagnetic wave propagation. We gave the
proposed definition of standard fractional vector cross product and then in later
sections calculated the fractional curl and fractional field for a standing wave,
a complex vector field, an electric field, a travelling wave, a transverse wave.
Complex order curl is also a part of this research.

2. Standard Fractional Vector Cross Product

Further to the study of standard fractional cross vector product in [6],[7]
where we defined :

Definition 2.1 Let R3 be the Euclidean 3-space equipped with standard inner
product ⟨., .⟩. Let (e1, e2, e3) be standard orthonormal basis of R3 and γ ∈ [0, 1]
a real number. Then, for vectors a = a1e1 + a2e2 + a3e3, b = b1e1 + b2e2 + b3e3
in R3, the Standard Fractional V ector Cross Product is defined by

a×γ b =
{
(a2b3 − a3b2) sin

(γπ
2

)
+ (a2 + a3)b1 cos

(γπ
2

)
− (b2 + b3)a1 cos

(γπ
2

)}
e1

+
{
(a3b1 − a1b3) sin

(γπ
2

)
+ (a3 + a1)b2 cos

(γπ
2

)
− (b3 + b1)a2 cos

({γπ
2

)}
e2

+
{
(a1b2 − a2b1) sin

(γπ
2

)
+ (a1 + a2)b3 cos

(γπ
2

)
− (b1 + b2)a3 cos

(γπ
2

)}
e3.

(1)

From eqn (1) we have,

ei ×γ ej = cos
(γπ
2

)
ej + sin

(γπ
2

)
ek − cos

(γπ
2

)
ei, (2)

ej ×γ ei = cos
(γπ
2

)
ei − sin

(γπ
2

)
ek − cos

(γπ
2

)
ej , (3)

el ×γ el = 0 for l = {1, 2, 3}. (4)

where (i, j, k) is a cyclic permutation of (1, 2, 3). The equations (2), (3) and
(4) are similar to that in [6], [7].

3. Fractional Curl For A Standing Wave With Standard Vector
Cross Product

From above section we have understood that fractional vector cross product
is the fractional rotation of angle γπ

2 of the vector on which the cross product
operation is carried on and the rotation about the axis of the vector which is
doing the cross product operation. The operation being linear we can use su-
perposition to get the expression for the standard fractional vector cross product.
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Let us take a stationary wave given as F̄ (z) = x̂(cos z)+ŷ(0)+ẑ(0). It is a vector
field directed towards x axis with variation in z - direction. Thus it has a gradi-
ent in z - direction. This string is vibrating between z = −π

2 and z = π
2 in x - y

plane but directed at x - axis. We see that the normal curl of this ” standing sta-
tionary wave’ of vibrating string using eq (27) of [7] takes the matrix form by [5]:

∇z × F̄ (z) =

 0 −x̂(−∞D1
z) 0

ŷ(−∞D1
z) 0 0

0 0 0

cos z0
0

 = ŷ(−∞D1
z) cos z

= ŷ(− sin z) = ŷ{cos(π
2
+ z)}.

(5)

The fractional curl operation will be a fractional rotation of this vector field in
the R3 plane by an angle γ(90◦) about z axis in anticlockwise direction and the
vector field will be advanced by an angle γ(90◦). Thus we get tilted fractional
curl field of this vector field which will have reflections on x -z and y - z planes.
The expression for this tilted curl can be written as from eqn(41) of [7] in the
matrix form by [5]. Thus we have

∇×γ F̄ = cos
(γπ
2

)∇γ
yz −∂γ

x −∂γ
x

−∂γ
y ∇γ

zx −∂γ
y

−∂γ
z −∂γ

z ∇γ
xy

x̂ cos z0
0

+ sin
(γπ
2

) ∣∣∣∣∣∣
x̂ ŷ ẑ
∂γ
x ∂γ

y ∂γ
z

cos z 0 0

∣∣∣∣∣∣ ,
(6)

where ∇γ
yz = ∂γ

∂yγ + ∂γ

∂zγ ,∇γ
zx = ∂γ

∂zγ + ∂γ

∂xγ ,∇γ
xy = ∂γ

∂xγ + ∂γ

∂yγ ,

∂γ

∂xγ = ∂γ
x ,

∂γ

∂yγ = ∂γ
y ,

∂γ

∂zγ = ∂γ
z

which gives

∇×γ F̄ = sin
(
γπ
2

)
(ŷ − ẑ) ∂γ

∂zγ cos z,

∇×γ F̄ = sin
(
γπ
2

)
(ŷ − ẑ)(− sin z)

= sin
(
γπ
2

)
(ŷ − ẑ) cos(π2 + z)

4. Fractional Curl For A Complex vector Field With Standard
Fractional Vector Cross Product

Let us take an example of a complex vector field F̄ = x̂(Aeik0z) which is a x
directed field varying in z direction. Thus fx = Aeik0z, fy = 0 and fz = 0 which
represents a wave travelling in x direction and harmonically in z direction. For
the given complex vector field ∂γFx

∂xγ = ∂γFx

∂yγ = 0 which means ∇γ
xyF̄ = 0. Using
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this ∇γ
yz = ∂γ

∂zγ and ∇γ
zx = ∂γ

∂zγ . Using this eqn (6) becomes

∇×γ F̄ = cos
(γπ
2

) ∂γ
z 0 0
0 ∂γ

z 0
−∂γ

z −∂γ
z 0

x̂fx0
0

+ sin
(γπ
2

) ∣∣∣∣∣∣
x̂ ŷ ẑ
0 0 ∂γ

z

fx 0 0

∣∣∣∣∣∣
= sin

(γπ
2

)
ŷ(∂γ

z fx)

(7)

Using −∞Dγ
t e

λt = ∂γeλt

∂tγ = λγeλt, we write the fractional curl as

curlF̄ = ∇×γ {x̂(Aeik0z)} = (ik0)
γAŷ sin

(γπ
2

)
eik0z, (8)

Thus the fractional field is given by using F̄f = (ik0)
−γ [∇×γ F̄ ] as given in

the following equation

F̄f = (ik0)
−γ [∇×γ {x̂(Aeik0z)}] = Aŷ sin

(γπ
2

)
eik0z. (9)

Let us take a vector field directed in z direction having variation in x - y plane
as F̄ = ẑF (x, y) = ẑ(eiλx+iµy). The given wave is z-directed travelling in x-y
plane making an angle ϕ such that tanϕ = µ

λ . Using eqn (6) the fractional curl
of the vector is given below:

∇×γ {ẑF (x, y)} = cos
(γπ
2

)∇γ
yz −∂γ

x −∂γ
x

−∂γ
y ∇γ

zx −∂γ
y

−∂γ
z −∂γ

z ∇γ
xy

 0
0

ẑF̄ (x, y)


+sin

(γπ
2

) ∣∣∣∣∣∣
x̂ ŷ ẑ
∂γ
x ∂γ

y ∂γ
z

0 0 F (x, y)

∣∣∣∣∣∣
= cos

(γπ
2

)
{−ẑ∂γ

x F̄ (x, y)− ẑ∂γ
y F̄ (x, y) + ẑ∇γ

xyF̄ (x, y)}

+sin
(γπ
2

)
{x̂∂γ

yF (x, y)− ŷ∂γ
xF (x, y)}

= sin
(γπ
2

)
{x̂∂γ

yF (x, y)− ŷ∂γ
xF (x, y)}.

(10)

We can write F (x, y) = eiλx̂+iµŷ = F (r̂) = ei|r|r̂ where |r| =
√
λ2 + µ2 and r̂

is the vector in radial direction, that is r̂ = x̂+ ŷ where x̂, ŷ are unit vectors of
cartesian coordinates.

As we know −∞Dγ
t e

λt = ∂γeλt

∂γt . So, we have
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∂γF (r̂)
∂r̂γ = ∂γ(e(i|r|r̂))

∂r̂γ = (i|r|)γei|r|r̂. This is a fractional derivative in r̂ direc-
tion.

It’s component in x-axis given by ∂γF (x,y)
∂xγ is obtained by the multiplication

of fractional derivative in the direction of r̂ with projection on x-axis i.e. λ(|r|).
Similarly it’s component in y-axis given by ∂γF (x,y)

∂yγ is obtained by the multipli-

cation of fractional derivative in the direction of r̂ with projection on y-axis i.e.
µ(|r|).

Thus we have

∂γ
xF (x, y) =

∂γ(e(i|r|r̂))

∂x̂γ
=

∂γ(e(iλx̂+iµŷ))

∂x̂γ
= iγ |r|γ λ

|r|
= iγλ

(√
λ2 + µ2

)γ−1
ei(λx̂+µŷ),

(11)

∂γ
yF (x, y) =

∂γ(e(i|r|r̂))

∂ŷγ
=

∂γ(e(iλx̂+iµŷ))

∂ŷγ
= iγ |r|γ µ

|r|
= iγµ

(√
λ2 + µ2

)γ−1
ei(λx̂+µŷ).

(12)

Similarly the component in z direction is iγ |r|γ or iγ
(√

λ2 + µ2
)
.

So the fractional curl for this vector field is:

∇×γ
(
ẑei(λx̂+µŷ)

)
= x̂iγµ(

√
λ2 + µ2

)γ−1
sin(

γπ

2
)ei(λx̂+µŷ)

−ŷiγλ(
√
λ2 + µ2

)γ−1
sin(

γπ

2
)ei(λx̂+µŷ).

(13)

Putting F = ẑei(λx̂+µŷ) , kx = λ and ky = µ and k =
√
k2x + k2y =

√
λ2 + µ2

Thus the fractional field can be written as

Ff = (ik)−γ∇×γ
(
ẑei(λx̂+µŷ) = (ik)−γ x̂iγky(k)

γ−1 sin(
γπ

2
)ei(kxx̂+ky ŷ)

+(ik)−γ(−ŷiγ)kx(k)
γ−1 sin(

γπ

2
)ei(kxx̂+ky ŷ),

(14)

Ff = [x̂
ky
k

sin(
γπ

2
) + ŷ

kx
k
(− sin(

γπ

2
)) (15)

For γ = 0, Ff = 0

For γ = 1, Ff = [x̂
ky

k − ŷ kx

k ]ei(kxx̂+ky ŷ)

5. Fractional Field For An Electric Field With Standard Fractional
Vector Cross Product

Let us consider a field of the form Ē = zeik(x cosϕ+ysinϕ).
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∇×γ Ē = ∇×γ
{
zeik(x cosϕ+ysinϕ)

}
= [x̂z sinϕ− ŷz cosϕ] sin(

γπ

2
)eik(x cosϕ+ysinϕ)

(16)

The fractional field of this electric field can be written as:

Ēf = (ik)−iγ∇×γ Ē = (ik)−γ [x̂z sinϕ− ŷz cosϕ] sin(
γπ

2
)eik(x cosϕ+ysinϕ).

(17)

6. Fractional Field For A Travelling Wave With Standard Fractional
Vector Cross Product

Let us consider a travelling wave given by F̄ = E0(x̂ + iŷ)eikẑ. This is a
polarized vector field with E0 radius in x - y plane but travelling in z direction.
We have F̄x = E0e

ikẑ, F̄y = iE0e
ikẑ, F̄z = 0. The fractional curl for γ ̸= 0 gives

∇×γ F̄ = cos
(γπ
2

)∇γ
yz −∂γ

x −∂γ
x

−∂γ
y ∇γ

zx −∂γ
y

−∂γ
z −∂γ

z ∇γ
xy

 0
0

E0(x̂+ iŷ)eikẑ


+sin

(γπ
2

) ∣∣∣∣∣∣
x̂ ŷ ẑ
∂γ
x ∂γ

y ∂γ
z

0 0 E0(x̂+ iŷ)eikẑ

∣∣∣∣∣∣
= sin

(γπ
2

)
{x̂∂γ

yE0(x̂+ iŷ)eikẑ − ŷ∂γ
xE0(x̂+ iŷ)eikẑ}

= sin
(γπ
2

)
{x̂iE0e

ikẑ − ŷE0e
ikẑ}(ik)γ

(18)

Using −∞Dγ
t e

λt = ∂γeλt

∂tγ = λγeλt,±i = e±
iπ
2 and cosχ± i sinχ = e±iχ, if the

vector field is right circularly polarized we write the fractional curl as

∇×γ F̄ = {−x̂E0e
ikẑ cos

(γπ
2

)
+ x̂iE0e

ikẑ sin
(γπ
2

)
}(ik)γ

+{iŷE0e
ikẑ cos

(γπ
2

)
− ŷE0e

ikẑ sin
(γπ
2

)
}(ik)γ

= {−x̂E0e
ikẑ{e

−iπγ
2 }+ iŷE0e

ikẑ{e
−iπγ

2 }}(ik)γ = (−x̂+ iŷ)E0e
ikẑ{e

−iπ
2 }γ(ik)γ .

(19)
If the vector field is left circularly poralized the fractional curl is given by

∇×γ F̄ = (i)γ{−x̂− iŷ}E0e
ikẑ(ik)γ . (20)

Thus the fractional field for circularly polarized traveling wave is

F̄f = (±i)γ(−x̂± iŷ)E0e
ikẑ = (−x̂± iŷ)E0e

ikẑ± iπγ
2 . (21)
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7. Complex Order Curl

Let us consider a travelling wave given by F̄ = E0(x̂+ iŷ)eikẑ. Putting γ = iδ
in eqns (19) - (21), we have fractional curl for right circularly polarized wave as

∇×iδ F̄ = (−i)iδ(−x̂+ iŷ)E0e
ikẑ(ik)iδ

= (e
iπ
2 )iδ{−x̂+ iŷ}E0e

ikẑ(ik)iδ = {−x̂+ iŷ}e
−πδ
2 E0e

ikẑ(ik)iδ
(22)

The fractional curl for a left circularly polarized wave is

∇×iδ F̄ = {−x̂− iŷ}eπδ
2 E0e

ikẑ(ik)iδ. (23)

Thus the fractional field for circularly polarized traveling wave is

F̄f = (−x̂± iŷ)e
±πδ
2 +ikẑE0. (24)

We have fractional curl of complex order for right circularly polarized wave as

∇×γ+iδ F̄ = (−i)γ(−x̂+ iŷ)E0e
−πδ
2 +ikẑ(ik)γ+iδ. (25)

The fractional curl for a left circularly polarized wave is

∇×γ+iδ F̄ = (i)γ{−x̂− iŷ}E0e
πδ
2 +ikẑ(ik)γ+iδ. (26)

Thus the fractional field for circularly polarized traveling wave is

F̄f = (−x̂± iŷ)E0e
±πδ
2 eikẑ±

iπγ
2 . (27)

Interpretation of the curl with complex order:
The real part of the fractional order γ > 0 gives the lead and lag of the spatial
phase of vector field for right and left circularly polarized vector field. The
imaginary part δ > 0 increases and decreases the radius of the amplitude of
vector field for right and left circularly polarized vector field.

8. Polarized Transverse Wave with Standard Fractional Vector
Cross Product

Let us consider a right and left circularly polarized transverse electromag-
netic(TEM) uniform plane wave propagating along +z direction has electric and
magnetic fields given as:

Ē± = (−x̂± ŷ)E0e
ikz

ηH̄± = (∓i)(−x̂± ŷ)E0e
ikz

(28)

Using eqns (19) - (21) we have the fractional fields given as,

Ēf(±) = (∓)γ(−x̂± ŷ)E0e
ikz

ηH̄f(±) = (∓)γ+1(−x̂± ŷ)E0e
ikzfor 0 < γ < 1

(29)



818 Manisha M. Kankarej, Jai Pratap Singh

We understand that (±i)γ is the eigen value for the operator (ik)−γ×γ and
the original circularly polarized electric and magnetic fields are eigen vectors for
the same operator.

Now let us take a standing wave formed from two TEM uniform plane wave
propagating in opposite direction having electric and magnetic fields as

Ē = x̂
[
E0e

−ikz − E0e
+ikz

]
= −x̂2iE0 sin(kz),

ηH̄ = ŷ
[
E0e

−ikz + E0e
+ikz

]
= ŷ2E0 cos(kz),

(30)

∇×γ Ē = cos
(γπ
2

)∇γ
yz −∂γ

x −∂γ
x

−∂γ
y ∇γ

zx −∂γ
y

−∂γ
z −∂γ

z ∇γ
xy

−x̂2iE0 sin(kz)
0
0


+sin

(γπ
2

) ∣∣∣∣∣∣
x̂ ŷ ẑ
∂γ
x ∂γ

y ∂γ
z

−2iE0 sin(kz) 0 0

∣∣∣∣∣∣ ,
∇×γ ηH̄ = cos

(γπ
2

)∇γ
yz −∂γ

x −∂γ
x

−∂γ
y ∇γ

zx −∂γ
y

−∂γ
z −∂γ

z ∇γ
xy

 0
ŷ2E0 cos(kz)

0


+sin

(γπ
2

) ∣∣∣∣∣∣
x̂ ŷ ẑ
∂γ
x ∂γ

y ∂γ
z

0 2E0 cos(kz) 0

∣∣∣∣∣∣ ,

(31)

∇×γ Ē = −2iE0 sin
(γπ
2

)
{ŷ∂γ

z [sin(kz)]} = −2iE0 sin
(γπ
2

)
ŷkγ sin k(z +

γπ

2
),

∇×γ ηH̄ = −2E0 sin
(γπ
2

)
{x̂∂γ

z [cos(kz)]} = −2E0 sin
(γπ
2

)
x̂kγ cos k(z +

γπ

2
).

(32)

Ēf = −2ie
−iγπ

2 E0 sin
(γπ
2

)
ŷ sin k(z +

γπ

2
),

ηH̄f = −2E0e
−iγπ

2 sin
(γπ
2

)
x̂ cos k(z +

γπ

2
).

(33)

Using eqn (33) we get the impedance as

Zf =
Ef−ŷ

Hf−x̂

=
i

η
tan k(z +

γπ

2
). (34)

At z = 0 we have Zf = i
η tan(γπ2 ).

For γ = 0, Zf = 0 implies that a flat surface in x-y plane located at z = 0 is a
perfect electric conductor (PEC).
For γ = 1, Zf = ∞ the surface is a perfect magnetic conductor (PMC). For
0 < γ < 1 the surface is between PEC and PMC and we get fractional fields of
the standing wave.
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9. Conclusion

In this paper we have given elaborate formulations for fractional curl and
fractional fields of different forms of electromagnetic wave propagation. As new
definition has been used for these formulations hence this mechanism has added
a new dimension to fractional operator. We have proved that the surface behaves
as PEC at γ = 0, as PMC at γ = 1 and between PEC and PMC when 0 < γ < 1.
These derivations will be useful in study of polarization, reflection, impedance,
boundary conditions where fractional solutions have applications.
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