• Title/Summary/Keyword: forward voltage drop

Search Result 65, Processing Time 0.039 seconds

Performance improvement of high $\beta$ and low saturation voltage power transistor through new process (공정개선을 통한 고전류이득 저포화전압 전력 트랜지서터의 성능향상)

  • 김준식;이재곤;최시영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.8
    • /
    • pp.8-14
    • /
    • 1998
  • A new process is developed to improve the electrical characteristics of high .beta. and low saturation voltage power transistor for lamp solenoid driver application. To prevent punch-through breakdown, appropriate combination of base doping and base width is necessary in the range of operating voltage of the circuit. The optimum values of base doping and sheet resistance are $Q_{D}$= $1.5{\times}10^{14}$atoms/$\textrm{cm}^2$ and $R_{s}$= 350 $\Omega/\square$ base wodtj $W_{B}$= $2.5{\mu}m$respectively. Under this condition it is possible to control $\beta$ of the transistor to 1500, maintaining $VB_{CBO}$ =200V. To reduce scattered distribution of .beta. of the devices on the wafer, it is necessary to improve emittter predeposition process. As a result, scattered distribution of .beta. of the devices on the wafer was reduced to 1/6 by using the new process. To improve collector to emitter forward voltage drop, $V_{ECF}$ of damper diode, an additional silicon etching process is used, which resulted in improving the value of $V_{eCF}$ from 2.8 V to 1.8V. With the suggested process superior device performance and higher yield are achieved.

  • PDF

Characteristics of Ni/SiC Schottky Diodes Grown by ICP-CVD

  • Gil, Tae-Hyun;Kim, Han-Soo;Kim, Yong-Sang
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.111-116
    • /
    • 2004
  • The Ni/SiC Schottky diode was fabricated with the $\alpha$-SiC thin film grown by the ICP-CVD method on a (111) Si wafer. $\alpha$-SiC film has been grown on a carbonized Si layer in which the Si surface was chemically converted to a very thin SiC layer achieved using an ICP-CVD method at $700^{\circ}C$. To reduce defects between the Si and $\alpha$-SiC, the surface of the Si wafer was slightly carbonized. The film characteristics of $\alpha$-SiC were investigated by employing TEM (Transmission Electron Microscopy) and FT-IR (Fourier Transform Infrared Spectroscopy). Sputterd Ni thin film was used as the anode metal. The boundary status of the Ni/SiC contact was investigated by AES (Auger Electron Spectroscopy) as a function of the annealing temperature. It is shown that the ohmic contact could be acquired beyond a 100$0^{\circ}C$ annealing temperature. The forward voltage drop at 100A/cm was I.0V. The breakdown voltage of the Ni/$\alpha$-SiC Schottky diode was 545 V, which is five times larger than the ideal breakdown voltage of the silicon device. As well, the dependence of barrier height on temperature was observed. The barrier height from C- V characteristics was higher than those from I-V.

Analysis of the electrical characteristics of SOI LIGBT with dual-epi layer (이중 에피층을 가지는 SOI LIGBT의 전기적 특성분석)

  • Kim, Hyoung-Woo;Kim, Sang-Cheol;Kim, Ki-Hyun;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.288-291
    • /
    • 2004
  • Due to the charge compensation effect, SOI(Silicon-On-Insulator) LIGBT with dual-epi layer have been found to exhibit both low forward voltage drop and high static breakdown voltage. In this paper, electrical characteristics of the SOI LIGBT with dual-epi structure is presented. Trenched anode structure is employed to obtain uniform current flowlines and shorted anode structure also employed to prevent the fast latch-up. Latching current density of the proposed LIGBT with $T_1=T_2=2.5{\mu}m,\;N_1=7{\times}10^{15}/cm^3,\;N_2=3{\times}10^{15}/cm^3$ is $800A/cm^2$ and breakdown voltage is 125V while latching current density and breakdown voltage of the conventional LIGBT is $700A/cm^2$ and 55V.

  • PDF

A novel TIGBT tructure with improved electrical characteristics (향상된 전기적 특성을 갖는 트렌치 게이트형 절연 게이트 바이폴라 트랜지스터에 관한 연구)

  • Koo, Yong-Seo;Son, Jung-Man
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.158-164
    • /
    • 2007
  • In this study, three types of a novel Trench IGBTs(Insulated Gate Bipolar Transistor) are proposed. The first structure has P-collector which is isolated by $SiO_2$ layer to enhance anode-injection-efficiency and enable the device to have a low on-state voltage drop(Von). And the second structure has convex P-base region between both gates. This structure may be effective to distributes electric-field crowded to gate edge. So this structure can have higher breakdown voltage(BV) than conventional trench-type IGBT(TIGBT). The process and device simulation results show improved on-state, breakdown and switching characteristics in each structure. The first one was presented lower on state voltage drop(2.1V) than that of conventional one(2.4V). Also, second structurehas higher breakdown voltage(1220V) and faster turn off time(9ns) than that of conventional structure. Finally, the last one of the proposed structure has combined the two structure (the first one and second one). This structure has superior electric characteristics than conventional structure about forward voltage drop and blocking capability, turnoff characteristics.

  • PDF

Analysis of Buck-Boost Converter for LED Drive (LED 구동을 위한 승강압 DC/DC 컨버터에 관한 연구)

  • Joe, Wi-Keun;Kim, Yong;Lee, Dong-Hyun;Cho, Kyu-Man;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.967_968
    • /
    • 2009
  • For lighting application, high-power LED nowadays is driven at 350mA and a sensing resistor is used to provide feedback for LED-current regulation. This method adds an IR drop at the output branch, and limits power efficiency as LED current is large and keeps increasing. In this paper, a power efficient LED-current sensing circuit is proposed. The circuit does not use any sensing resistor but extracts LED-current information from the output capacitor of the driver. Controlling the brightness of LEDs requires a driver that provides a constant, regulated current. In one case, the converter may need to step down the input voltage, and, in another, it may need to boost up the output voltage. These situations often arise in applications with wide-ranging ""dirty"" input power sources, such as automotive systems. And, the driver topology must be able to generate a large enough output voltage to forward bias the LEDs. So, to provide this requirements, 13W prototype Buck-Boost Converter is used.

  • PDF

A Study on the Design of the LIGBT Structure with Trap Injection for Improved Electrical Characteristics (트랩 주입의 구조적 설계에 따른 LIGBT의 전기적 특성 개선에 관한 연구)

  • Choo, Kyo-Hyuck;Kang, Ey-Goo;Lee, Jung-Hoon;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.932-934
    • /
    • 1999
  • In this paper, the new IGBT structures with trap injection are proposed to improve switching characteristics of the conventional SOI LIGBT. The simulations are used in order to investigate the effects of the position, width and concentration of trap injection region using 2D device simulator MEDICI. And, their electrical characteristics are analyze and the optimum design parameters are extracted. As a result of simulation, the turn off time for the proposed LIGBT model A by the trap injection is $0.78{\mu}s$. And, the latch up voltage is 3.4V and forward blocking voltage is 168V which are superior to that of conventional structure. In addition, the proposed model is achieved more efficient in switching time and process effort. Therefore, It is shown that the trap injection is very effective to reduce the turn off time with a little increasing of on-state voltage drop if its design and process parameters are optimized.

  • PDF

The Fabrication of Packaged 4H-SiC 2kV power PiN diode and Its Electrical Characterization (탄화규소 (4H-SiC) 기반 패키지 된 2kV PiN 파워 다이오드 제작과 전기적 특성 분석)

  • Song, Jae-Yeol;Kang, In-Ho;Bahng, Wook;Joo, Sung-Jae;Kim, Sang-Cheol;Kim, Nam-Kyun;Lee, Yong-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.67-68
    • /
    • 2008
  • In this study we have developed a packaged silicon carbide power diode with blocking voltage of 2kV. PiN diodes with 7 field limiting rings (FLRs) as an edge termination were fabricated on a 4H-SiC wafer with $30{\mu}m$-thick n-epilayer with donor concentration of $1.6\times10^{15}cm^{-3}$. From packaged PiN diode testing, we obtained reverse blocking voltage of 2kV, forward voltage drop of 4.35V at 100A/$cm^2$, on-resistance of $6.6m{\Omega}cm^2$, and about 8 nanosec reverse recovery time. These properties give a potential for the power system application.

  • PDF

A Study on the Forward I-V Characteristics of the Separated Shorted-Anode Lateral Insulated Gate Bipolar Transistor (분리된 단락 애노드를 이용한 수평형 SA-LIGBT 의 순방향 전류-전압 특성 연구)

  • Byeon, Dae-Seok;Chun, Jeong-Hun;Lee, Byeong-Hun;Kim, Du-Yeong;Han, Min-Ku;Choi, Yeon-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.161-166
    • /
    • 1999
  • We investigate the device characteristics of the separated shorted-anode LIGBT (SSA-LIGBT), which suppresses effectively the negative differential resistance regime, by 2-dimensional numerical simulation. The SSA-LIGBT increases the pinch resistance by employing the highly resistive n-drift region as an electron conduction path instead of the lowly resistive n buffer region of the conventional SA-LIGBT. The negative differential resistance regime of the SSA-LIGBT is significantly suppressed as compared with that of the conventional SA-LIGBT. The SSA-LIGBT shows the lower forward voltage drop than that of the conventional SA-LIGBT.

  • PDF

Electrical Characteristics of SiC Lateral P-i-N Diodes Fabricated on SiC Semi-Insulating Substrate

  • Kim, Hyoung Woo;Seok, Ogyun;Moon, Jeong Hyun;Bahng, Wook;Jo, Jungyol
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.387-392
    • /
    • 2018
  • Static characteristics of SiC (silicon carbide) lateral p-i-n diodes implemented on semi-insulating substrate without an epitaxial layer are inVestigated. On-axis SiC HPSI (high purity semi-insulating) and VDSI (Vanadium doped semi-insulating) substrates are used to fabricate the lateral p-i-n diode. The space between anode and cathode ($L_{AC}$) is Varied from 5 to $20{\mu}m$ to inVestigate the effect of intrinsic-region length on static characteristics. Maximum breakdown Voltages of HPSI and VDSI are 1117 and 841 V at $L_{AC}=20{\mu}m$, respectiVely. Due to the doped Vanadium ions in VDSI substrate, diffusion length of carriers in the VDSI substrate is less than that of the HPSI substrate. A forward Voltage drop of the diode implemented on VDSI substrate is 12 V at the forward current of $1{\mu}A$, which is higher than 2.5 V of the diode implemented on HPSI substrate.

Improvement on Switching Characteristics of IGBT by Means of Lifetime Control (Lifetime Control을 이용한 IGBT의 스위칭 특성 개선)

  • Lee, Se-Gyu;Jeong, Sang-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.3
    • /
    • pp.165-168
    • /
    • 2000
  • Improvement on the switching characteristic of IGBT by means of the uniform and local lifetime control is studied numerically using two-dimensional simulator, MEDICI. In the case of uniform lifetime control, the on-state and switching characteristics are simulated as a function of lifetime, and compared with the experimental results reported, which allows a relationship between dose of electron irradiation and controlled lifetime. In the case of local lifetime control, simulations are carried out by varying the position, width, and lifetime of the locally controlled region, and the results are compared with the characteristics for the case of the uniform lifetime control. The turn-off time of the device with an optimized locally controlled region is found to decrease from about $4.5\mus$ to 0.11$mutextrm{s}$ while the forward voltage drop increases from 1.37V to 2.61V in comparison with that for the uniform lifetime control.

  • PDF