• 제목/요약/키워드: forming limit diagram

검색결과 102건 처리시간 0.027초

유한요소해석을 이용한 마그네슘 합금 판재 성형한계도의 실용적 작성 방법 (Practical Method for FLD of Mg Alloy Sheet using FEM)

  • 김경태;이형욱;김세호;송정한;이근안;최석우;이용신
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.183-185
    • /
    • 2008
  • Forming Limit Diagram(FLD) is a representative tool for evaluating formability of sheet metals. This paper presents a methodology to determine the FLD using Finite Element Method. For predicting the forming limits numerically. Previous methods such as using the thickness strain or the ductile fracture criterion are limited at plane strain domain. These results suggest that behavior of the void growth in sheet metals is different from real one. In contrast to previous methods, a more exact model which takes void growth into account is used. This result agrees with the experimental result qualitatively.

  • PDF

내부구조재의 설계변수에 따른 성형영향 분석 (A Study on the Forming-analysis of Inner structured Design parameter)

  • 박재현;최두선;제태진;김형종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1547-1550
    • /
    • 2005
  • ISB panel, inner structured of metal in two skin and bonded, has inner structures which have low relative density, stiffness and strength with low weight of make improvement for that purpose. A kind of Inner structures have various structure types. In this paper, we have studied the Forming Limit Diagram(FLD), thickness variation and stress strain to dimple structure of sheet by analysis of Dynaform and LS-Dyna.

  • PDF

자동차용 다상복합조직강판의 성형한계 평가 (Evaluation of Forming Limits of Automotive Muti-phase Steel Sheets)

  • 이승열;정지용;박성호;김상헌;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.195-198
    • /
    • 2009
  • In this study, in order to get the forming limit of AHSS sheet in the negative minor strain region, the shapes of die corner and drawbead are redesigned by employing the Taguchi's design of experiment method and the FEM forming simulation. With the redesigned FLD tool, the forming limit tests of automotive multi-phase(Dual Phase and Complex Phase) steel sheets which induce the normal fractures on the blank are performed.

  • PDF

유한요소 역 해석을 이용한 축대칭 다단계 박판성형에서의 공정변수 설계에 관한 연구 (Design of Porcess Parameters in Axisymmetric Multi-step Deep Drawing by a Finite Element Inverse Method)

  • 조천수;이충호;허훈
    • 소성∙가공
    • /
    • 제6권4호
    • /
    • pp.300-310
    • /
    • 1997
  • A finite element inverse method is introduced for direct prediction of blank shapes, strain distributions, and reliable intermediate shapes from desired final shapes in axisymmetric multi-step deep drawing processes. This mothod enables the determination of process disign. The approach deals with the Hencky's deformation theory. Hill's second order yield criterion, simplified boundary conditions, and minimization of plastic work with constraints. The algorithm developed is applied to motor case forming, and cylindrical cup drawing with the large limit drawing ratio so that it confirms its validity by demonstrating resonably accurate numerical results of each problem. Numerical examples reveal the reason of difficulties in motor case forming with corresponding limit diagrams.

  • PDF

아연도금강판의 성형한계도 (Forming Limit Diagrams of Zinc and Zinc Alloy Coated Steel Sheets)

  • 권재욱;이동녕;김인수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.92-100
    • /
    • 1994
  • Forming limit diagrams for three different galvanized deep drawing quality steel sheets have been measured by hemispherical punch stretching. The experimental forming limit diagrams have been compared with results calculated using the shear instability criterion and the M-K model which takes into account a strain gradient effect resulting from bending (curvature) of a flat sheet by punch stretching. The measured data were in good agreement with the results calculated using exponent M value of 8 in Hosford's yield criterion for the M-K model and M= 6 for the shear instability model.

  • PDF

비대칭 시편의 딥드로잉 실험에 의한 박판금속의 성형한계도 (Identification of Forming Limits of Sheet Metals for Automobile Parts by Asymmetric Deep-drawing Experiments)

  • 허훈;이충호;정재웅
    • 소성∙가공
    • /
    • 제7권1호
    • /
    • pp.81-93
    • /
    • 1998
  • Identification of forming limits of sheet metals is an important task to be done before the sheet metal forming processes. The information of the forming limit is indispensable for design of deformed shapes and related forming processes. This procedure becomes more important than ever as the auto-body becomes complicated and the number of auto-body parts is reduced for lower production cost. To identify the forming limit of sheet metals stretching with a hemispherical punch has gained popularity because of the convenient experimental procedure. The stretching experiment however has localized deformation or the shear band is originated from the non-unifrom deformation in the critical circum-stance instead of the absolute criterion. More accurate information of the forming limit therefore could be obtained by a more appropriate experiment to the real process. In this papaer an experiment program is devised to practivally identify the forming limits of sheet metals for auto-body parts. The experiment program contains not only stretching but deep-drawing Both forming experiments use the same hemispherical punch while they use different specimens. Deep-drawing experiments use speci-mens cut out in circular arc on both sides of circular blank to make it torn during the deep-drawing They also use speciments cut out straight in one side of a circular blank to make it deformed unevenly which causes local deformation during the deep-drawing. The experimental result demonstrates that the forming limit diagrams in the two cases show difference in their effective magnitude. The forming limit curve from deep-drawing is located lower than that from stretching. It is noted from the result that the deep-drawing process causes acceleration of localized deformation in comparison with the stretching process. From the experimental result the maximum value of forming limit could be pre-dicted for safe design.

  • PDF

재생냉각 챔버 제작용 구리합금의 열처리 전후 성형성 평가 (Evaluation of Formability of Copper Alloy for Regenerative Cooling Chamber before and after Heat Treatment)

  • 유철성;이금오;최환석
    • 한국항공우주학회지
    • /
    • 제37권12호
    • /
    • pp.1201-1208
    • /
    • 2009
  • 액체로켓 연소기의 재생냉각 챔버의 제작에 사용되는 구리합금의 성형성을 돔 장출 시험과 인장시험을 수행하여 평가하였다. 성형성 평가에 사용된 시편은 열처리 유무와 재료의 방향성을 고려하여 제작하여 고온 열처리와 재료의 방향성이 성형성에 미치는 영향을 평가하였다. 시험 결과 열처리 후 구리합금 재료의 성형한계 값은 열처리 전 시편의 성형한계 값에 비하여 증가하였으나, 시편의 제작 방향에 따른 성형성의 차이는 열처리 영향에 비하여 작게 나타났다. 그리고 성형성 평가 시험방법에 따라 성형한계 값이 다르게 나타났다. 이러한 결과 들로부터 연소기 재생냉각 챔버의 내측구조물에서 실린더 형상의 구조물을 벌징 공정으로 네킹이나 파손 없이 노즐 형상으로 성공적으로 성형하기 위해서는 벌징 전 재료에 대한 고온열처리가 매우 중요함을 확인하였다. 또한 시험방법이 성형성 평가에 크게 영향을 미치는 것을 확인하였다. 본 연구를 통하여 얻은 구리합금의 성형한계도는 이 재료를 사용하여 제작하는 연소기 재생냉각 챔버 노즐의 구조설계를 위한 데이터로 활용할 예정이다.

핫스탬핑 공정에서 Tailor Rolled Blank 의 성형 특성을 고려한 성형한계 예측 (Limits Considering the Deformation Characteristics of Tailor Rolled Blank during Hot Stamping)

  • 김재홍;고대훈;서판기;김병민
    • 소성∙가공
    • /
    • 제23권6호
    • /
    • pp.351-356
    • /
    • 2014
  • The current study aims to predict the forming limits considering the deformation characteristics of tailor rolled blank(TRB) during hot stamping. The formability of TRB is affected by the TRB line orientation because elongations change due to the intrinsic geometry within the sheet. To evaluate the forming limits, Nakazima tests were conducted at elevated temperatures with different TRB line orientations. Forming limit diagrams(FLD) of TRB can be predicted by an interpolating equation based on the Nakazima test. Predicted FLDs were used in FE-simulations of a rectangular drawing. The predicted limit drawing height was compared with experimental results. The simulation results show good agreement with the experimental ones with an error range of 3%.

Ti-합금판재(Ti-6Al-4V)의 고온 성형성 평가 (Evaluation of Pess Formability for Ti-6Al-4V Sheet at Elevated Temperature)

  • 박진기;박노광;김영석
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.230-235
    • /
    • 2010
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only for aerospace parts but also for bio prothesis and motorcycle. However, the database is insufficient in the titanium alloy for press forming process. In this study, the effect of temperature on the forming limit diagram was investigated for Ti-6Al-4V titanium alloy sheet through the Hecker‘s punch stretching test at elevated temperature. Experimental results obtained in this study can provide a database for the development of press forming process at elevated temperature of Ti-6Al-4V titanium alloy sheet. From the experimental studies it can be concluded that the formability of Ti-6Al-4V titanium alloy sheet is governed by the ductile failure for the testing temperature. The formability of Ti-6Al-4V titanium alloy sheet at $700^{\circ}C$ increases about 7 times compared with that at room temperature.

Al 6061 Bulk재에서 인장 및 압축 시험에 의한 상온 가공성 비교 분석 (Analysis of Cold Workability at the A16061 Bulk Material by Tension and Compression Tests)

  • 김국주;박종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.74-79
    • /
    • 2003
  • When workability at the a certain bulk deformation process is defined as the maximum plastic deformation capability that the workpiece can sustain without causing any cracks or fracture, the workability is dependent on the microstructure, initial workpiece shape, stress state developed during the deformation process, strain rata and presence of the interfacial friction between workpiece and tool. For a review purpose, the workability definition and test methods are summarized depending on the applied stress state at bulk deformation process in Table 1 at the text. In this study, the cold workabilities of as-cast A16061 bulk material have been measured and comparatively analyzed at the primary tensile stress state by using tensile specimens, the primary compressive stress state by using cylindrical specimens, and the forming limit diagram by ductile fracture.

  • PDF