Browse > Article
http://dx.doi.org/10.5228/KSPP.2010.19.4.230

Evaluation of Pess Formability for Ti-6Al-4V Sheet at Elevated Temperature  

Park, J.G. (경북대학교 기계공학부)
Park, N.K. (재료 연구소 특수 합금 연구부)
Kim, Y.S. (경북대학교 기계공학부)
Publication Information
Transactions of Materials Processing / v.19, no.4, 2010 , pp. 230-235 More about this Journal
Abstract
Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only for aerospace parts but also for bio prothesis and motorcycle. However, the database is insufficient in the titanium alloy for press forming process. In this study, the effect of temperature on the forming limit diagram was investigated for Ti-6Al-4V titanium alloy sheet through the Hecker‘s punch stretching test at elevated temperature. Experimental results obtained in this study can provide a database for the development of press forming process at elevated temperature of Ti-6Al-4V titanium alloy sheet. From the experimental studies it can be concluded that the formability of Ti-6Al-4V titanium alloy sheet is governed by the ductile failure for the testing temperature. The formability of Ti-6Al-4V titanium alloy sheet at $700^{\circ}C$ increases about 7 times compared with that at room temperature.
Keywords
Forming Limit Diagram; Titanium Alloys Ti-6Al-4V; Formability; Elevated Temperature; Ductile Failure;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. G. Cockroft and D. J. Latham, 1968, Ductility and the workability of metals. J. Inst. Met., Vol. 96, pp. 33-39.
2 J. G. Park, J. H. Kim, N. K. Park, and Y. S. Kim, 2009, Plastic deformation characteristic of titanium alloy sheet (Ti-6Al-4V) at warm temperature, 2009 Spring Conf. Trans. Mat. Processing, pp. 152-157.   과학기술학회마을
3 R. W. Logan and W. F. Hosford, 1980, Upperbound anisotropic yield locus calculations assuming <111> pencil glide, Int. J. Mech. Sci., Vol. 22, pp. 419-430.   DOI
4 M. Vanderhasten, L. Rabet, and B. Verlinden, 2008, Ti-6Al-4V: deformation map and modelisation of tensile behavior, Mater. Design, Vol. 29, pp.1090-1098.   DOI
5 A. S. Khan, R. Kazmi, and B. Farrokh, 2007, Multiaxial and non-proporional loading responses, anisotropy and modeling of Ti-6Al-4V titanium alloy over wide ranges of strain rates and temperatures, Int. J. Plast., Vol. 23, pp. 931-950.   DOI
6 S. B. Leen, M. A. Krohn, and T. H. Hyde, 2008, Failure prediction for titanium alloys using a superplastic forming limit diagram approach, Mat-wiss. U. werkstofftech, Vol. 38, pp. 327-331.
7 R. Hill, 1983, The mathematical theory of plasticity, Oxford University Press, New York.
8 Z. Marciniak and K. Kuczynski, 1967, Limit strains in the process of stretch-forming sheet metal, Int. J. Mech. Sci., Vol. 9, pp. 609-612.   DOI
9 H. Y. Kim, S. C. Choi, H.S. Lee, H. J. Kim, and K. T. Lee, 2007, Experiment for forming limit diagram and springback characteristics of AZ31B magnesium alloy sheet at elevated temperature, Trans. Mat. Processing, Vol. 16, pp. 364-369.   과학기술학회마을   DOI
10 H. S. Son and Y. S. Kim, 2003, Prediction of forming limits for anisotropic sheets containing prolate ellipsoidal voids, Int. J. Mech. Sci., Vol. 45, pp. 1625-1643.   DOI   ScienceOn
11 S. S. Hecker, 1972, A simple forming limit curve technique and results on aluminum alloys, Proc. 7th Biennial Congress Int. Deep Drawing Research Group, Amsterdam, pp. 51-58
12 A. S. Korhonen and T. Manninen, 2008, Forming and fracture limits of austenitic stainless steel sheets, Mater. Sci. Eng. A, Vol. 488, pp. 157-166   DOI
13 L. Zhang, Y. J. Yin, Y. Q. Chen, and M.-D. Xue, 2003, Damage and forming limit analysis in porous ductile metals at room or elevated temperature, Mater. Sci. Tech., Vol. 19, pp. 1355-1360.   DOI
14 M. J. Donachie, Jr., 1988, Titanium: A Technical Guide, ASM Int., Metals Park, OH.
15 G. K. Turnbull, 1982, Titanium and Titanium alloys-Source book, ASM International, Metal Park, OH, pp. 265-269.
16 P. G. Partidge, 1967, The Crystallography and Deformation mode of HCP metals, Int. Mat. Rev., Vol. 12, pp. 169-164.   DOI
17 D. G. Lee, Y. H. Lee, C. S. Lee, and S. H. Lee, 2004, Effects of volume fraction of tempered martensite on dynamic deformation properties of Ti-6Al-4V alloy having bimodal microsture, J. Korean Inst. Met. Mater., Vol. 42, pp. 455-463.
18 G. Lutjering, 1998, Influence of processing on microstructure and mechanical properties of $({\alpha}+{\beta})$ titanium alloys, Mater. Sci. Eng. A, Vol. 243, pp. 32-45.   DOI
19 R. R. Boyer, G. E. Welsch, and E. W. Collings, 1994, Materials Properties Handbook, ASM International, Metal Park, OH. P. 488.