• Title/Summary/Keyword: forecasting accuracy

Search Result 668, Processing Time 0.029 seconds

A Study on the Data Driven Neural Network Model for the Prediction of Time Series Data: Application of Water Surface Elevation Forecasting in Hangang River Bridge (시계열 자료의 예측을 위한 자료 기반 신경망 모델에 관한 연구: 한강대교 수위예측 적용)

  • Yoo, Hyungju;Lee, Seung Oh;Choi, Seohye;Park, Moonhyung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.73-82
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, the flood damage on riverside social infrastructures was extended so that there has been a threat of overflow. Therefore, a rapid prediction of potential flooding in riverside social infrastructure is necessary for administrators. However, most current flood forecasting models including hydraulic model have limitations which are the high accuracy of numerical results but longer simulation time. To alleviate such limitation, data driven models using artificial neural network have been widely used. However, there is a limitation that the existing models can not consider the time-series parameters. In this study the water surface elevation of the Hangang River bridge was predicted using the NARX model considering the time-series parameter. And the results of the ANN and RNN models are compared with the NARX model to determine the suitability of NARX model. Using the 10-year hydrological data from 2009 to 2018, 70% of the hydrological data were used for learning and 15% was used for testing and evaluation respectively. As a result of predicting the water surface elevation after 3 hours from the Hangang River bridge in 2018, the ANN, RNN and NARX models for RMSE were 0.20 m, 0.11 m, and 0.09 m, respectively, and 0.12 m, 0.06 m, and 0.05 m for MAE, and 1.56 m, 0.55 m and 0.10 m for peak errors respectively. By analyzing the error of the prediction results considering the time-series parameters, the NARX model is most suitable for predicting water surface elevation. This is because the NARX model can learn the trend of the time series data and also can derive the accurate prediction value even in the high water surface elevation prediction by using the hyperbolic tangent and Rectified Linear Unit function as an activation function. However, the NARX model has a limit to generate a vanishing gradient as the sequence length becomes longer. In the future, the accuracy of the water surface elevation prediction will be examined by using the LSTM model.

A comparison study for accuracy of exit poll based on nonresponse model (무응답모형에 기반한 출구조사의 예측 정확성 비교 연구)

  • Kwak, Jeongae;Choi, Boseung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.53-64
    • /
    • 2014
  • One of the major problems to forecast election, especially based on survey, is nonresponse. We may have different forecasting results depend on method of imputation. Handling nonresponse is more important in a survey about sensitive subject, such as presidential election. In this research, we consider a model based method of nonresponse imputation. A model based imputation method should be constructed based on assumption of nonresponse mechanism and may produce different results according to the nonresponse mechanism. An assumption of the nonresponse mechanism is very important precondition to forecast the accurate results. However, there is no exact way to verify assumption of the nonresponse mechanism. In this paper, we compared the accuracy of prediction and assumption of nonresponse mechanism based on the result of presidential election exit poll. We consider maximum likelihood estimation method based on EM algorithm to handle assumption of the model of nonresponse. We also consider modified within precinct error which Bautista (2007) proposed to compare the predict result.

The Evaluation of TOPLATS Land Surface Model Application for Forecasting Flash Flood in mountainous areas (산지돌발홍수 예측을 위한 TOPLATS 지표해석모델 적용성 평가)

  • Lee, Byong Jua;Choi, Su Mina;Yoon, Seong Sima;Choi, Young Jean
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.19-28
    • /
    • 2016
  • The objective of this study is the generation of the gridded flash flood index using the gridded hydrologic components of TOPLATS land surface model and statistic flash flood index model. The accuracy of this method is also examined in this study. The study area is the national capital region of Korea, and 38 flash flood damages had occurred from 2009 to 2012. The spatio-temporal resolutions of land surface model are 1 h and 1 km, respectively. The gridded meteorological data are generated using the inverse distance weight method with automatic weather stations (AWSs) of Korea Meteorological Administration (KMA). The hydrological components (e.g., surface runoff, soil water contents, and water table depth) of cells corresponding to the positions of 38 flood damages reasonably respond to the cell based hourly rainfalls. Under the total rainfall condition, the gridded flash flood index shows 71% to 87% from 4 h to 6 h in the lead time based on the rescue request time and 42% to 52% of accuracy at 0 h which means that the time period of the lead time is in a limited rescue request time. From these results, it is known that the gridded flash flood index using the cell based hydrological components from land surface model and the statistic flash flood index model have a capability to predict flash flood in the mountainous area.

A Study for Optimized Detecter Location Considering the Traffic Characteristics in National Highway (일반국도 통행특성을 고려한 지점검지기의 적정설치지점 선정에 관한 연구)

  • Byeon, Sang-Cheol;Lee, Seung-Jae
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.19-30
    • /
    • 2006
  • This study deals with the optimized detector location considering the traffic characteristics in National Highway. Although there ave many construction works for ITS in National Highway, there is not specific criteria for detector location which can effect the accuracy of traffic information. This study. therefore. aims to Provide the optimized detector location criteria which can represent the traffic characteristics of National Highway. It collects traffic factors of study area by GPS Probe-car and defector, and Presents the optimized detector location by the correlation analysis between spot-speed and link-travel-time. The main results of this study are as followings ; First, the correlation between the spot-speed and link-travel-time Presents the opposite bell shape of the graph (U-type owe) which is increased it?on the upstream then, declined through some unspecified Point of the link. Second, the optimized detector location usually distributes around midstream of link, even though it does not have a consistency. Third, therefore, the optimized detector location generally should be located between $55{\sim}60%$ of total link length. Forth. high level of vertical slope is one of the most important factors of detector location, so it should be excluded for determination of optimized detector location. Finally, expecting that the results of this study would improve the accuracy of travel time estimation and forecasting.

Establishing a Demand Forecast Model for Container Inventory in Liner Shipping Companies (정기선사의 컨테이너 재고 수요예측모델 구축에 대한 연구)

  • Jeon, Jun-woo;Jung, Kil-su;Gong, Jeong-min;Yeo, Gi-tae
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.4
    • /
    • pp.1-13
    • /
    • 2016
  • This study attempts to establish a precise forecast model for the container inventory demand of shipping companies through forecasts based on equipment type/size, ports, and weekly system dynamics. The forecast subjects were Shanghai and Yantian Ports. Only dry containers (20, 40) and high cubes (40) were used as the subject container inventory in this study due to their large demand and valid data computation. The simulation period was from 2011 to 2017 and weekly data were used, applying the actual data frequency among shipping companies. The results of the model accuracy test obtained through an application of Mean Absolute Percentage Error (MAPE) verified that the forecast model for dry 40' demand, dry 40' high cube demand, dry 20' supply, dry 40' supply, and dry 40' high cube supply in Shanghai Port provided an accurate prediction, with $0%{\leq}MAPE{\leq}10%$. The forecast model for supply and demand in Shanghai Port was otherwise verified to have relatively high prediction power, with $10%{\leq}MAPE{\leq}20%$. The forecast model for dry 40' high cube demand and dry 20' supply in Yantian Port was accurate, with $0%{\leq}MAPE{\leq}10%$. The forecast model for supply and demand in Yantian Port was generally verified to have relatively high prediction power, with $10%{\leq}MAPE{\leq}20%$. The forecast model in this study also had relatively high accuracy when compared with the actueal data managed in shipping companies.

Current Status and Future Challenges of the National Population Projection in South Korea Concerning Super-Low Fertility Patterns (국제비교를 통해 바라본 한국의 장래인구추계 현황과 전망)

  • Jun, Kwang-Hee;Choi, Seul-Ki
    • Korea journal of population studies
    • /
    • v.33 no.2
    • /
    • pp.85-111
    • /
    • 2010
  • South Korea has experienced a rapid fertility decline and notable mortality improvement. As the drop in TFR was quicker and greater in terms of tempo and magnitude, it cast a new challenge of population projection - how to improve the forecasting accuracy in the country with a super-low fertility pattern. This study begin with the current status of the national population projection as implemented by Statistics Korea by comparing the 2009 interim projection with the 2006 official national population projection. Secondly, this study compare the population projection system including projection agencies, projection horizons, projection intervals, the number of projection scenarios, and the number of assumptions on fertility, mortality and international migration among super-low fertility countries. Thirdly we illustrate a stochastic population projection for Korea by transforming the population rates into one parameter series. Finally we describe the future challenges of the national population projection, and propose the projection scenarios for the 2011 official population projection. To enhance the accuracy, we suggest that Statistics Korea should update population projections more frequently or distinguish them into short-term and long-term projections. Adding more than four projection scenarios including additional types of "low-variant"fertility could show a variety of future changes. We also expect Statistics Korea topay more attention to the determination of a base population that should include both national and non-national populations. Finally we hope that Statistics Korea will find a wise way to incorporate the ideas underlying the system of stochastic population projection as part of the official national population projection.

Modeling the Distribution Demand Estimation for Urban Rail Transit (퍼지제어를 이용한 도시철도 분포수요 예측모형 구축)

  • Kim, Dae-Ung;Park, Cheol-Gu;Choe, Han-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.25-36
    • /
    • 2005
  • In this study, we suggested a new approach method forecasting distribution demand of urban rail transit usign fuzzy control, with intend to reflect irregularity and various functional relationship between trip length and distribution demand. To establish fuzzy control model and test this model, the actual trip volume(production, attraction and distribution volume) and trip length (space distance between a departure and arrival station) of Daegu subway line 1 were used. Firstly, usign these data we established a fuzzy control model, nd the estimation accuracy of the model was examined and compared with that of generalized gravity model. The results showed that the fuzzy control model was superior to gravity model in accuracy of estimation. Therefore, wwe found that fuzzy control was able to be applied as a effective method to predict the distribution demand of urban rail transit. Finally, to increase the estimation precision of the model, we expect studies that define membership functions and set up fuzzy rules organized with neural networks.

Estimation Model for Freight of Container Ships using Deep Learning Method (딥러닝 기법을 활용한 컨테이너선 운임 예측 모델)

  • Kim, Donggyun;Choi, Jung-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.574-583
    • /
    • 2021
  • Predicting shipping markets is an important issue. Such predictions form the basis for decisions on investment methods, fleet formation methods, freight rates, etc., which greatly affect the profits and survival of a company. To this end, in this study, we propose a shipping freight rate prediction model for container ships using gated recurrent units (GRUs) and long short-term memory structure. The target of our freight rate prediction is the China Container Freight Index (CCFI), and CCFI data from March 2003 to May 2020 were used for training. The CCFI after June 2020 was first predicted according to each model and then compared and analyzed with the actual CCFI. For the experimental model, a total of six models were designed according to the hyperparameter settings. Additionally, the ARIMA model was included in the experiment for performance comparison with the traditional analysis method. The optimal model was selected based on two evaluation methods. The first evaluation method selects the model with the smallest average value of the root mean square error (RMSE) obtained by repeating each model 10 times. The second method selects the model with the lowest RMSE in all experiments. The experimental results revealed not only the improved accuracy of the deep learning model compared to the traditional time series prediction model, ARIMA, but also the contribution in enhancing the risk management ability of freight fluctuations through deep learning models. On the contrary, in the event of sudden changes in freight owing to the effects of external factors such as the Covid-19 pandemic, the accuracy of the forecasting model reduced. The GRU1 model recorded the lowest RMSE (69.55, 49.35) in both evaluation methods, and it was selected as the optimal model.

Improvement of precipitation forecasting skill of ECMWF data using multi-layer perceptron technique (다층퍼셉트론 기법을 이용한 ECMWF 예측자료의 강수예측 정확도 향상)

  • Lee, Seungsoo;Kim, Gayoung;Yoon, Soonjo;An, Hyunuk
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.475-482
    • /
    • 2019
  • Subseasonal-to-Seasonal (S2S) prediction information which have 2 weeks to 2 months lead time are expected to be used through many parts of industry fields, but utilizability is not reached to expectation because of lower predictability than weather forecast and mid- /long-term forecast. In this study, we used multi-layer perceptron (MLP) which is one of machine learning technique that was built for regression training in order to improve predictability of S2S precipitation data at South Korea through post-processing. Hindcast information of ECMWF was used for MLP training and the original data were compared with trained outputs based on dichotomous forecast technique. As a result, Bias score, accuracy, and Critical Success Index (CSI) of trained output were improved on average by 59.7%, 124.3% and 88.5%, respectively. Probability of detection (POD) score was decreased on average by 9.5% and the reason was analyzed that ECMWF's model excessively predicted precipitation days. In this study, we confirmed that predictability of ECMWF's S2S information can be improved by post-processing using MLP even the predictability of original data was low. The results of this study can be used to increase the capability of S2S information in water resource and agricultural fields.

Prediction and Analysis of PM2.5 Concentration in Seoul Using Ensemble-based Model (앙상블 기반 모델을 이용한 서울시 PM2.5 농도 예측 및 분석)

  • Ryu, Minji;Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1191-1205
    • /
    • 2022
  • Particulate matter(PM) among air pollutants with complex and widespread causes is classified according to particle size. Among them, PM2.5 is very small in size and can cause diseases in the human respiratory tract or cardiovascular system if inhaled by humans. In order to prepare for these risks, state-centered management and preventable monitoring and forecasting are important. This study tried to predict PM2.5 in Seoul, where high concentrations of fine dust occur frequently, using two ensemble models, random forest (RF) and extreme gradient boosting (XGB) using 15 local data assimilation and prediction system (LDAPS) weather-related factors, aerosol optical depth (AOD) and 4 chemical factors as independent variables. Performance evaluation and factor importance evaluation of the two models used for prediction were performed, and seasonal model analysis was also performed. As a result of prediction accuracy, RF showed high prediction accuracy of R2 = 0.85 and XGB R2 = 0.91, and it was confirmed that XGB was a more suitable model for PM2.5 prediction than RF. As a result of the seasonal model analysis, it can be said that the prediction performance was good compared to the observed values with high concentrations in spring. In this study, PM2.5 of Seoul was predicted using various factors, and an ensemble-based PM2.5 prediction model showing good performance was constructed.