• Title/Summary/Keyword: forcing factors

Search Result 63, Processing Time 0.024 seconds

The Impact of Southern Ocean Thermohaline Circulation on the Antarctic Circumpolar Current Transport

  • Kim, Seong-Joong;Lee, Bang-Yong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.291-299
    • /
    • 2006
  • The observed ocean barotropic circulation is not completely explained by the classical wind-driven circulation theory. Although it is believed that the thermohaline forcing plays a role in the ocean barotropic circulation to some degree, how much the thermohaline forcing contributes to the barotropic circulation is not well known. The role of thermohaline circulation driven by changes in temperature and salinity in the Southern Ocean (SO) water masses on the Antarctic Circumpolar Current (ACC) transport is investigated using a coupled ocean - atmosphere - sea ice - land surface climate system model in a Last Glacial Maximum (LGM) context. Withthe implementation of glacial boundary conditions in a coupled model, a substantial increase in the ACC transport by about 75% in 80 years of integration and 25% in the near LGM equilibrium is obtained despite of the decreases in the magnitude of wind stresses over the SO by 33% in the transient time and 20% in the near-equilibrium. This result suggests that the increase in the barotropic ACC transport is due to factors other than the wind forcing. The change in ocean thermohaline circulation in the SO seems to play a significant role in enhancing the ACC transport in association with the change in the bottom pressure torque.

  • PDF

A Study on Balanced-Type Oscillating Mole Drainer (II) (Model Test For Vibration) (평형식진동탄환암거천공기의 연구(II) -모수실험 : 진동에 대하여-)

  • 김용환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3962-3969
    • /
    • 1975
  • 1. When the frame of the experimental apparatus was directly fixed on the platform, result from the spectrum density analysis showed that the generated vibration frequecy of the system was nearly-same as the system's own characteristic vibration frequency, 80Hz, in the case of the forcing vibration frequency was 7.5 to 22.5Hz. The reduction ratio of acceleration by balanced type model compare to non-balanced type one was 26.66 percent. 2. When the frame of experimental apparatus was fixed on the platform with putting a shock absorbing rubber between the frame and the platform, the generated vibration frequency of the system was same as forcing vibration frequency. When either frequency or the amplitude of the forcing vibration was increased, the acceleration ratio was increased too. The average reduction ratio was resulted 44.77 per cent. It was concluded that this method of acceleration measurement(the method using a shock absorbing rubber) was a reaonable method, because actual machine will work under such condition. As the vibration frequency and aptitude were increased, the absolute magnitude of acceleration was increased. 3. unbalanced rotating parts, and unbalanced moment of inertia of links were supposed to be causing factors of residual vibration in spite of using the balanced type oscillating mole drainer. This fact suggested that the attachment of the counter weight on the rotating parts which satisfy the condition mw$.$rw=m0e, was necessary. And also, it was expected that the shock absorbing effect could be improved by putting the shock absorbing materials between the moving parts and their supports.

  • PDF

The Analytic and Numerical Solutions of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer Models to the Strong Offshore Winds.

  • Lee, Hyong-Sun
    • Journal of the korean society of oceanography
    • /
    • v.31 no.2
    • /
    • pp.75-88
    • /
    • 1996
  • The analytic and numerical solution of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer models are derived. The large coastal-sea level drop and the fast westward speed of the anticyclonic gyre due to strong offshore winds using two ocean models are investigated. The models are forced by wind stress fields similar in structure to the intense mountain-pass jets(${\sim}$20 dyne/$cm^{2}$) that appear in the Gulfs of Tehuantepec and Papagayo in the Central America for periods of 3${\sim}$7 days. Analytic and numerical solutions compare favorably with observations, the large sea-level drop (${\sim}$30 cm) at the coast and the fast westward propagation speeds (${\sim}$13 km/day) of the gyres. The coastal sea-level drop is enhanced by several factors: horizontal mixing, enhanced forcing, coastal geometry, and the existence of a second active layer in the 2$\frac{1}{2}$-layer model. Horizontal mixing enhances the sea-level drop because the coastal boundary layer is actually narrower with mixing. The forcing ${\tau}$/h is enhanced near the coast where h is thin. Especially, in analytic solutions to the 2$\frac{1}{2}$-layer model the presence of two baroclinic modes increases the sea-level drop to some degree. Of theses factors the strengthened forcing ${\tau}$/h has the largest effect on the magnitude of the drop, and when all of them are included the resulting maximum drop is -30.0 cm, close to observed values. To investigate the processes that influence the propagation speeds of anticyclonic gyre, several test wind-forced calculations were carried out. Solutions to dynamically simpler versions of the 1$\frac{1}{2}$-layer model show that the speed is increased both by ${\beta}$-induced self-advection and by larger h at the center ofthe gyres. Solutions to the 2$\frac{1}{2}$-layer model indicate that the lower-layer flow field advects the gyre westward and southward, significantly increasing their propagation speed. The Papagayo gyre propagates westward at a speed of 12.8 km/day, close to observed speeds.

  • PDF

THE INFLUENCE OF DRIVING FUNCTION ON FLOW DRIVEN BY PUMPING WITHOUT VALVES

  • Jung, Eun-Ok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.97-122
    • /
    • 2011
  • Fluid dynamics driven by pumping without valves (valveless pumping) shows interesting physics. Especially, the driving function to generate valveless pump mechanism is one of important factors. We consider a closed system of valveless pump which consists of flexible tube part and stiffer part. Fluid and structure (elastic tube) interaction motions are generated by the periodic compress-and-release actions on an asymmetric location of the elastic loop of tubing. In this work, we demonstrate how important the driving forcing function affects a net flow in the valveless circulatory system and investigate which parameter set of the system gives a more efficient net flow around the loop.

Climatological variability of surface particulate organic carbon (POC) and physical processes based on ocean color data in the Gulf of Mexico

  • Son, Young-Baek;Gardner, Wilford D.
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.235-258
    • /
    • 2011
  • The purpose of this study is to investigate climatological variations from the temporal and spatial surface particulate organic carbon (POC) estimates based on SeaWiFS spectral radiance, and to determine the physical mechanisms that affect the distribution of pac in the Gulf of Mexico. 7-year monthly mean values of surface pac concentration (Sept. 1997 - Dec. 2004) were estimated from Maximum Normalized Difference Carbon Index (MNDCI) algorithm using SeaWiFS data. Synchronous 7-year monthly mean values of remote sensing data (sea surface temperature (SST), sea surface wind (SSW), sea surface height anomaly (SSHA), precipitation rate (PR)) and recorded river discharge data were used to determine physical forcing factors. The spatial pattern of POC was related to one or more factors such as river runoff, wind-derived current, and stratification of the water column, the energetic Loop Current/Eddies, and buoyancy forcing. The observed seasonal change in the POC plume's response to wind speed in the western delta region resulted from seasonal changes in the upper ocean stratification. During late spring and summer, the low-density river water is heated rapidly at the surface by incoming solar radiation. This lowers the density of the fresh-water plume and increases the near-surface stratification of the water column. In the absence of significant wind forcing, the plume undergoes buoyant spreading and the sediment is maintained at the surface by the shallow pycnocline. However, when the wind speed increases substantially, wind-wave action increases vertical motion, reducing stratification, and the sediment were mixed downward rather than spreading laterally. Maximum particle concentrations over the outer shelf and the upper slope during lower runoff seasons were related to the Loop Current/eddies and buoyancy forcing. Inter-annual differences of POC concentration were related to ENSO cycles. During the El Nino events (1997-1998 and 2002-2004), the higher pac concentrations existed and were related to high runoffs in the eastern Gulf of Mexico, but the opposite conditions in the western Gulf of Mexico. During La Nina conditions (1999-2001), low Poe concentration was related to normal or low river discharge, and low PM/nutrient waters in the eastern Gulf of Mexico, but the opposite conditions in the western Gulf of Mexico.

A Study of the Reverse Logistics Information Factors for Environmental Conscious Logistics System (환경친화적 물류시스템의 환경물류 정보화 요인 연구)

  • Kim Hyun-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.4
    • /
    • pp.59-68
    • /
    • 2004
  • Recently, shifting channel power is forcing supply chain to take back products. As you can imagine returned product has always been a problem for all parties in the supply chain due to the disruption in operations and a headache in processing returned products. Therefore, every member of supply chain should respond to reverse logistics activities particularly for the return handling process. Under such a strong demand of efficient and cost effective reverse logistics activities, particularly for the return handling process, the information system should be implemented and participated in intensively. This study analyzed the reverse logistics information factors for environmental conscious logistics system limited to returns from customers/consumers. The results provide reverse logistics information factors based on the return handling process which can be used as benchmarking for companies seeking implementation of an efficient return handling system.

Two-Layer Box Modeling for Identifying Major Factors Forcing High-Concentration Ozone in the Seoul Area (이층 상자모델을 이용한 서울지역 고농도 오존 발생의 주요 인자 연구)

  • 김영진;김영성;김진영;윤순창
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.424-425
    • /
    • 1999
  • 오존은 대기 중에 있는 질소산화물 (NO$_{x}$)과 휘발성 유기화합물 (Volatile Organic Compounds, VOCs)이 강한 햇빛과 반응하여 생성되는 2차 오염물질이다. 오존의 농도는 오염물질의 배출과 기상조건, 그리고 대기 중 화학반응이 상호 연결되어 나타난다. 다양한 변수들이 오존 농도 상승에 영향을 미치며, 이러한 과정을 유기적으로 이해하기 위하여 다양한 광화학 수치 모델들이 사용되고 있다.(중략)

  • PDF

Influence of Seasonal Forcing on Habitat Use by Bottlenose Dolphins Tursiops truncatus in the Northern Adriatic Sea

  • Bearzi, Giovanni;Azzellino, Arianna;Politi, Elena;Costa, Marina;Bastianini, Mauro
    • Ocean Science Journal
    • /
    • v.43 no.4
    • /
    • pp.175-182
    • /
    • 2008
  • Bottlenose dolphins are the only cetaceans regularly observed in the northern Adriatic Sea, but they survive at low densities and are exposed to significant threats. This study investigates some of the factors that influence habitat use by the animals in a largely homogeneous environment by combining dolphin data with hydrological and physiographical variables sampled from oceanographic ships. Surveys were conducted year-round between 2003 and 2006, totalling 3,397 km of effort. Habitat modelling based on a binary stepwise logistic regression analysis predicted between 81% and 93% of the cells where animals were present. Seven environmental covariates were important predictors: oxygen saturation, water temperature, density anomaly, gradient of density anomaly, turbidity, distance from the nearest coast and bottom depth. The model selected consistent predictors in spring and summer. However, the relationship (inverse or direct) between each predictor and dolphin presence varied among seasons, and different predictors were selected in fall. This suggests that dolphin distribution changed depending on seasonal forcing. As the study area is relatively uniform in terms of bottom topography, habitat use by the animals seems to depend on complex interactions among hydrological variables, caused primarily by seasonal change and likely to determine shifts in prey distribution.

Holocene Climate Variability on the Centennial and Millennial Time Scale

  • Lee, Eun Hee;Lee, Dae-Young;Park, Mi-Young;Kim, Sungeun;Park, Su Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.335-340
    • /
    • 2014
  • There have been many suggestions and much debate about climate variability during the Holocene. However, their complex forcing factors and mechanisms have not yet been clearly identified. In this paper, we have examined the Holocene climate cycles and features based on the wavelet analyses of $^{14}C$, $^{10}Be$, and $^{18}O$ records. The wavelet results of the $^{14}C$ and $^{10}Be$ data show that the cycles of ~2180-2310, ~970, ~500-520, ~350-360, and ~210-220 years are dominant, and the ~1720 and ~1500 year cycles are relatively weak and subdominant. In particular, the ~2180-2310 year periodicity corresponding to the Hallstatt cycle is constantly significant throughout the Holocene, while the ~970 year cycle corresponding to the Eddy cycle is mainly prominent in the early half of the Holocene. In addition, distinctive signals of the ~210-220 year period corresponding to the de Vries cycle appear recurrently in the wavelet distribution of $^{14}C$ and $^{10}Be$, which coincide with the grand solar minima periods. These de Vries cycle events occurred every ~2270 years on average, implying a connection with the Hallstatt cycle. In contrast, the wavelet results of $^{18}O$ data show that the cycles of ~1900-2000, ~900-1000, and ~550-560 years are dominant, while the ~2750 and ~2500 year cycles are subdominant. The periods of ~2750, ~2500, and ~1900 years being derived from the $^{18}O$ records of NGRIP, GRIP and GISP2 ice cores, respectively, are rather longer or shorter than the Hallstatt cycle derived from the $^{14}C$ and $^{10}Be$ records. The records of these three sites all show the ~900-1000 year periodicity corresponding to the Eddy cycle in the early half of the Holocene.

Analysis of Factors Behind Human Error in Fatal Construction Accidents using the m-SHEL Model (m-SHEL 모델에 의한 건설 중대 사고재해의 휴먼에러 배후 요인 분석)

  • An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.4
    • /
    • pp.415-423
    • /
    • 2022
  • As human factors are the most important cause of construction accidents, it is important to reduce human error in construction work to reduce accidents. However, the error forcing context in organizational situations acts as a factor behind human error. Therefore, fatal construction accidents were analyzed using the m-SHEL model, which can identify the factors behind human errors. Through such analysis, it was found that there are differences in the detailed factors behind human errors according to the type of fatal accidents in construction, This study is meaningful in that it confirmed through accident cases that it is important to understand and respond to organizational situations in order to reduce human error in construction work.