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ABSTRACT. Fluid dynamics driven by pumping without valves (valveless pumping) shows
interesting physics. Especially, the driving function to generate valveless pump mechanism
is one of important factors. We consider a closed system of valveless pump which consists
of flexible tube part and stiffer part. Fluid and structure (elastic tube) interaction motions are
generated by the periodic compress-and-release actions on an asymmetric location of the elastic
loop of tubing. In this work, we demonstrate how important the driving forcing function affects
a net flow in the valveless circulatory system and investigate which parameter set of the system
gives a more efficient net flow around the loop.

1. INTRODUCTION

The numerical simulations of a net flow which is generated by a valveless mechanism in
a circulatory system are presented. This work was originally motivated by an biomedical ob-
jective; explain the complicated valveless blood flow mechanism in the circulation. Liebau
demonstrated the various experiments of valveless pumping [26, 25, 24, 23] and observed a
net flow from those experiments. His interest was motivated by the observation that sufficient
blood circulation is retained in patients with probably inoperative aortic valves [42] and by the
theory (William Harvey’s concept of the circulation) that the heart alone is not good enough
to obtain the necessary pumping, but it is assisted [17]. In our previous work, we examined
flows driven by valveless pumping in Liebau’s model, a closed circuit tube that consists of
(almost) rigid and flexible parts. The main results of these simulations of valveless pumping
were following. We observed the existence of a net flow when the periodic driving oscillation
is applied on the end of flexible segments of the loop of tubing, as in the physical experiments
of valveless pumping [20, 25, 31].

It has been surprisingly investigated how various applications of valveless pumping might
be found in the biomedical engineering, biology, and engineering fields. For instance, early
stages of the human embryonic circulation [30]; the thoracic pump theory in the blood flow
mechanism during the cardiopulmonary resuscitation (CPR) (It has been reported that the heart
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acts as a passive conduit and the mitral valve remains open during the entire cycle of CPR
[2, 6, 16, 43]); Amphioxus [41]; lymph drainage in the eye [15]; inoperative aortic valve [42];
and microelectromechanical system (MEMS) [29]. A detailed description of these applications
of valveless pumping is presented in [19, 31].

In this paper, driving forcing functions controlled by the compression duration d, that is
defined by the ratio of the compression and relaxation time during a period, are used. We have
observed that more net flow around the loop is obtained when the compression duration is close
to d = 0.5, i.e. when the relaxation period is introduced rather than the continuous motions
of the compression and expansion without the relaxation in our previous model [19]. Various
parameter sets have been studied with this new driving forcing function, in order to investigate
the most effective model of valveless pumping.

This paper is organized as follows; Section 2 describes the computational model of valveless
pumping. A brief outline of the numerical method, immersed boundary method, and a driving
forcing function will be presented in this section. The numerical results will be discussed in
section 3. In this section, the time-averaged fluxes generated by the driving forcing functions
will be compared. Various parameter sets will be studied and some special case studies will be
also presented, in order to understand the mechanism of valveless pumping. Section 4 includes
conclusions.

2. COMPUTATIONAL MODEL OF THE VALVELESS PUMPING

2.1. The immersed boundary method. In this section, a summary of immersed boundary
method that is used in our simulations of valveless pumping is described. The immersed bound-
ary method is both a mathematical formulation and a computational method for any problem in
which an incompressible viscous fluid interacts with an immersed elastic material. The ideal-
ized elastic material is treated as a part of fluid and has neither mass nor volume. The immersed
elastic material moves at the local fluid velocity, while the motion of fluid is effected by this
elastic material. The strength of the immersed boundary method is that the motion of the elastic
material that has a complicated and time-dependent geometry is solved in a Cartesian box of
fluid, instead of using a grid on the physical boundary that would be very difficult in compu-
tation. This methodology has been applied to the heart and its valves [27, 32, 33, 34, 35, 36],
platelet aggregation during blood clotting [13], flow of suspensions [14], fluid dynamics of the
inner ear [3], aquatic animal locomotion [9, 11], flow in collapsible tubes [40], the collapse of
thin-walled veins, biofilm processes [7, 8], viscoelastic networks and cell deformation in the
context [4], arteriolar flow and mass transport [1], and valveless pumping [18, 19].

The numerical algorithm of immersed boundary method has been also improved over time:
improved volume conservation [38], truncated Newton methods for the complex immersed
elastic structure [11], immersed interface method [22], shared-memory parallel vector im-
plementation [28], an adaptive version of Immersed Boundary Method [39], blob projection
method [5], and formal second-order accuracy and reduced numerical viscosity [21].

The following is a general summary of this method. The motion of a viscous incompressible
fluid is represented by Eulerian velocities and pressures on a fixed Cartesian coordinate system
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and the motion of the elastic materials is expressed in Lagrangian form. A typical time step
of the computational method proceeds as follows: At the beginning of the time step, the fluid
velocity at each point of the fluid grid and the boundary configuration of the elastic materials
are known. The boundary forces are computed from the given boundary configuration, and
then used to spread these boundary forces into the nearby fluid grid to evaluate the fluid forces
using the Dirac delta function. With the fluid forces known, the Navier-Stokes equations are
solved in order to get an updated velocity on the fluid grid. Finally, upon interpolating the
updated velocity field to the boundary locations using the same delta function, the boundary is
moved at the interpolated velocity. This completes the time step.

2.2. Computational model of valveless pumping. We shall now consider a two-dimensional
computational model of valveless pumping. The racetrack shape of the elastic material, Sb

for b = 1 (inner immersed boundary) or b = 2 (outer immersed boundary), is modeled as an
immersed boundary in the rectangular computational domain, Ω, that is filled with incompress-
ible fluid. Figure 1 displays the initial configuration of the two-dimensional valveless pumping.
The motion of a coupled system of the fluid-immersed boundary is governed by the fluid equa-
tions in the Eulerian form, the immersed boundary equations in the Lagrangian form, and the
interaction equations in the mixed Eulerian and Lagrangian forms. The equations of motions
are then as follows:

The Navier-Stocks equations (fluid equations) are given by

ρ

(
∂u(x, t)

∂t
+ (u(x, t) · ∇)u(x, t)

)
+∇p(x, t) = µ∇2u(x, t) + F (x, t), (2.1)

∇ · u(x, t) = 0, (2.2)

where the constant parameters ρ and µ are the fluid density and viscosity, respectively. The
fluid velocity u(x, t), fluid pressure p(x, t), and external force density F (x, t) are functions
of a fixed Cartesian coordinates x = (x, y) and the time t.

The interaction equations between the fluid and the immersed boundary are given by

F (x, t) =

∫
Sb

f b(s, t) δ
2(x−Xb(s, t)) ds, (2.3)

U b(s, t) =

∫
Ω
u(x, t) δ2(x−Xb(s, t)) dx, (2.4)

The configurations of the immersed boundaries at time t are Xb(s, t) parameterized by s,
where b = 1 (inner immersed boundary) or 2 (outer immersed boundary), and 0 ≤ s ≤ L1 for
the inner immersed boundary and 0 ≤ s ≤ L2 for the outer immersed boundary. L1 and L2 are
the unstressed lengths of the inner and outer boundaries, respectively. f b(s, t) are the boundary
force densities and U b(s, t) are the boundary velocities, for b = 1 (inner immersed boundary)
or 2 (outer immersed boundary). The delta function is a product of two one-dimensional delta
functions: δ2(x) = δ(x)δ(y).
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FIGURE 1. Initial position of two-dimensional valveless pumping: flexible
boundary (thin lines), almost rigid (thick lines), and fluid markers (dots). The
incompressible viscous fluid fills the entire computational box, containing the
racetrack shape of the elastic material.

The immersed boundary equations are given by

∂Xb(s, t)

∂t
(s, t) = U b(s, t), (2.5)

f b(s, t) = −(κt)b(Xb(s, t)−Zb(s, t)) + κc

(
∂2Xb(s, t)

∂s2

)
, (2.6)

where κt is a stiffness constant between the physical boundary and the target positions and
κc is a stiffness constant of a linear spring between two adjacent boundary points. In the
boundary force density equation (2.6), the given function Zb(s, t) is called the target position
of the immersed boundary. This target position is the source of applying periodic forcing to
the immersed boundaries. The derivation of the boundary force will be given in the following
subsection. Note that the choice of the target position is a main difference from the previous
work [].

Since we used the same numerical method as the previous work, we present only a brief
summary of numerical method in this paper. The rectangular computational box is discretized
by a Cartesian grid at time t = n∆t: xn

jk = x(j∆x, k∆y, n∆t), where j = 0, . . . , Nx − 1,
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k = 0, . . . , Ny − 1, and n = 0, 1, . . . . The immersed boundary are represented by a collection
of moving points at time t = n∆t : Xn

bl = Xb(l∆sb, n∆t), where l = 1, . . . , M1 and
L1 = M1∆s1 for b = 1 (inner immersed boundary) or l = 1, . . . , M2 and L2 = M2∆s2 for
b = 2 (outer immersed boundary). Since the boundaries are closed, X1(M1 + 1) = X1(1) or
X2(M2 + 1) = X2(1).

The updated un+1, Xn+1
b from given un, Xn

b are computed as follows:
Step 1. Compute the immersed boundary force density fn

b from the given boundary config-
uration Xn

b and the target positions Zn
b . For l = 1, . . . , Mb, and b = 1 (inner boundary) or 2

(outer boundary),

fn
bl = −(κt)l(X

n
bl −Zn

bl) + κc

(
Xn

b(l+1) − 2Xn
bl +Xn

b(l−1)

∆s2b

)
, (2.7)

where ∆sb is an arc length.
Step 2. Spread this boundary force density fn

b into the nearby 16 lattice points in order get
the fluid force density F n.

F n
jk =

2∑∑∑
b=1

Mb∑∑∑
l=1

fn
blδ

2
h(xjk −Xn

bl)∆sb for j, k = 0, 1, . . . , N − 1, (2.8)

where δ2h is a smoothed approximation to the two-dimensional 4 points Dirac delta function.
Step 3. Solve the Navier-Stokes equations for the updated fluid velocity un+1 and pn+1

from un and F n in the Step 2.

ρ

(
un+1 − un

∆t
+ un · ∇±

hu
n

)
+D0pn+1 = µ∆hu

n+1 + F n, (2.9)

D0 · un+1 = 0. (2.10)

The implicit first order difference operators are used in time and space. The backward Euler
scheme for the Stokes system, the upwind scheme for the convection term, the centered dif-
ference operator for the pressure, and the standard 5 points Laplacian operator for the viscous
term are chosen. The periodic boundary conditions are imposed on the computational domain.
Because of choice of boundary condition, the fast fourier transform (FFT) and inverse FFT
algorithms are used to solve (2.9) and (2.10).

Step 4. Interpolate this updated fluid velocity un+1 and apply no-slip condition to get the
updated immersed boundary velocity Un+1

b and position Xn+1
b .

Un+1
bl =

N−1∑∑∑
j,k=0

un+1
jk δ2h(xjk −Xn

bl)h
2, (2.11)

Xn+1
bl = Xn

bl +∆tUn+1
bl . (2.12)

This completes the description of the process (Steps 1–4, above) by which the quantities u
and X are updated.
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2.3. Boundary force determination. The force density imposed on the immersed boundary
consists of the two terms: the target position term, f bt, and the curvature-like term, f bc for
b = 1 (inner boundary) or b = 2 (outer boundary).

In the first term, f bt, of the equation (2.6), the given target position Zb(s, t) actually drive
a complex dynamic system of flow around the loop of tubing. The stiffness constant, κt,
represents the property of elasticity for the two different compliances of the tubing. The very
large number is chosen for the almost rigid part of tubing; κt = 26000, and much smaller
number is chosen for the flexible part; κt = 900. Both inner and outer boundaries have the same
values of κt. The target position Zb(s, t) consists of the time-independent and time-dependent
parts. The main purpose of this time-independent target position is to keep the racetrack shape
of the flow loop during the simulated time. The time-independent target function is applied
on the whole loop of tubing except the part that the driving force is imposed. The left 1/3
of the flexible segment is chosen for applying the periodic force in most of our simulations.
The physical position with the thick curves of the loop in Figure 1, almost rigid part, keeps
the racetrack shape as given in the initial configuration. This is because of choice of the large
number for the stiffness constant κt. We now present the time-dependent target position. The
role of the time-dependent target position is to impose the periodic force in some portion of
the flexible segment in order to get a flow around the loop of tubing. A parameter compression
duration, d, is introduced in this new periodic forcing function. The compression duration
is defined by the ratio of the time for compression and relaxation during a period, T . For
instance, if d = 0.5, then the compression is applied for the first half of the periodic time and
the relaxation for the rest half of the period. Note that, in the previous work, the flows were
all driven by the continuous motions of compression and expansion on one end of the flexible
segment of the loop. This change in the forcing function is the main difference between the
previous and present studies. It is surprising to see how small change in the forcing function
makes more effective model of valveless pumping.

We describe the mathematical formulations of the time-dependent target position in one end
of the flexible segment of the loop of tubing.

Let Zb(s, t) = (Zxb(s), Zyb(s, t)), where s is restricted to the range of values that defines
the portion of the flexible segment that is imposed the periodic forcing. Let the target position
on the flexible segment begins at x = x0 and ends at x = x1.

Define

A(s, t) = A0 sin

(
2πt

dT

)
sin

(
π
Zxb(s)− x0
x1 − x0

)
,

where A0 is the amplitude of the target position motion, T is its period, and d is compression
duration. If d = 0.5 is chosen, the function A(s, t) is the half sine function with the wavelength
2(x1 − x0) at the fixed time.

Zb(s, t) is defined as follows:

Zbx(s, t) = Xb(s, 0), for b = 1 or b = 2.
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FIGURE 2. The y component of the target positions at the center of the top
flexible segment that the driving force is applied are plotted as a function of the
time. In the old time-dependent target position at the top frame, the continuous
motions of contraction and expansion are chosen for the driving force. In the
new time-dependent target position at the bottom frame, the periodic motions
of the compression and relaxation are chosen for the driving force. Parameters
T = 1 s, A0 = 0.6 cm, and d = 0.5 are chosen.

For 0 < mod(t, T) ≤ dT,

Zby(s, t) =

{
0.25Yscale + 0.5l +A(s, t) if b = 1 (inner boundary),
0.25Yscale − 0.5l −A(s, t) if b = 2 (outer boundary),

and for dT < mod(t, T) ≤ T,

Zby(s, t) = Xb(s, 0), for b = 1 or b = 2.

where l is the resting diameter of the tube and Yscale is the width of the computational domain.
In Figure 2, the y component of the target positions at the center of the top flexible segment

that the driving force is applied are plotted as a function of the time. The x component of the
target positions is fixed as x0+x1

2 at the top flexible segment. The old time-dependent target
position (in the previous paper) and the new time-dependent target position (in the present
paper) is plotted in the top frame and bottom frame, respectively. Parameters T = 1 s, A0 = 0.6
cm, and d = 0.5 is chosen.
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The negative, zero, and positive values represents the motion of the compression, relaxation,
and expansion of the portion on the flexible segment that the time-dependent target function
is applied. Flows are driven by the periodic motions of the compression and relaxation in the
time-dependent target position are used in the present study, whereas the continuous motions
of compression and expansion in the time-dependent target position were used in the previous
work.

In the second term, f bc, of the equation (2.6), the curvature-like term models elastic property
of the immersed boundary. This force is driven from a time dependent nonnegative energy
function Eb(X1,X2, . . . ,XMb, t) for b = 1 (inner boundary) or b = 2 (outer boundary).
Energy function achieves the minimum at the desired configuration. We assume that the resting
length between successive points on the immersed boundary is zero. An energy function which
has the desired properties for our model is as follows:

For b = 1 (inner boundary) or b = 2 (outer boundary),

Eb(X1,X2, . . . ,XMb
, t) =

1

2
κc

Mb∑∑∑
l=1

∥X l+1 −X l∥2

=
1

2
κc

Mb∑∑∑
l=1

(
(xl+1 − xl)

2 + (yl+1 − yl)
2
)
,

and the forces at each boundary points are

f∗
b(X l) = − ∂Eb

∂X l
, for l = 1, . . . ,Mb

= κc

(
xl+1 − 2xl + xl−1

∆sb
,
yl+1 − 2yl + yl−1

∆sb

)
,

= κc

(
X l+1 − 2X l +X l−1

∆sb

)
,

where X l = (xl, yl) for l = 1, . . . ,Mb. Therefore, the boundary force density is derived as
one in equation (2.6).

2.4. Parameters. The CGS units are used in this work. We characterize the motions of flows
with the dimensionless number, Reynolds number Re. The Reynolds number is defined by
Re = ρUl

µ , where l is a diameter of the tube, ρ is a constant density, µ is viscosity, and U is
a time-averaged velocity. Note that since the flow is incompressible and the simulated time in
our computations is chosen until the flow become a steady state, any choice of cross sections
of the loop should give the same time-averaged velocity. The range of the Reynolds number
in this paper is between 0 to around 193. Any nonzero Reynolds number implies an existence
of a net flow with the either clockwise or counterclockwise direction around the loop in the
valveless pumping mechanism.

The physical and numerical parameters are presented in Tables 1 and 2. In this paper, the
four parameters, amplitude of the target positions, frequency and compression duration of the
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TABLE 1. Physical parameters.

Physical parameters Symbol
density ρ 1 g/cm3

viscosity µ 0.01 g/cm ·s
circumference of a loop D 28.57 cm
diameter of tube l 0.6 cm
computational domain Xscale × Yscale 16 cm × 8 cm
length of the flexible segment lflexible 8 cm
period T 0.05 s ∼ 4 s
amplitude(target) A0 0.4 cm and 0.6 cm
compression duration d 0 ∼ 1
fraction compressed 0 ∼ 0.5 lflexible cm
duration of experiment tmax 100 s
stiffness constant(almost rigid) κt 26000 g/s2· cm
stiffness constant(flexible) κt 900 g/s2· cm
stiffness constant(curvature) κc 120 g· cm/s2

TABLE 2. Computational parameters.

Computational parameters Symbol
fluid lattice Nx ×Ny 256× 128

number of immersed boundary points M1 +M2 3654 or 7308
meshwidth h = ∆x = ∆y 0.0625 cm
initial distance between boundary points ∆s1 = ∆s2 h/4 = 0.0156 cm or h/8

= 0.0078 cm
time step duration ∆t 0.5 h2 = 0.00195 s

driving force, and fraction of the flexible segment being compressed, are varied and other
physical parameters are fixed. For some cases of our simulations, it has been observed that
the motions of the flexible boundaries are too active to get leaking fluid markers though the
flexible boundaries. The volume (or area) could be conserved for those cases as the initial dis-
tance between boundary points is chosen by h/8, which implies that the twice more immersed
boundary points than other general cases are considered. We investigate how these parameters
effect the flow dynamics of valveless pumping. In particular, the direction and magnitude of a
net flow around the loop are the main focus of this research.

3. RESULTS AND DISCUSSION

Our main objective is to make a more efficient model of valveless pumping. In this paper,
flows are induced by a driving force governing by the periodic motions of compression and
relaxation on the end of the flexible segments. In [19], we used only compression function
for driving function without relaxation period. From now on, we will call this driving force
as old driving function and the driving force with the compress-and-release actions as new
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driving function. With this new driving force, we have also observed the same phenomena we
presented in the previous work;

• Existence of a net flow around the loop despite of the lack of valves.
• Direction and magnitude of flow are determined by the parameters such as frequency,

amplitude, compression duration of the driving force and the fraction of the flexible
boundary being compressed.

• Wave motions along the flexible segments are governed by a standing wave pattern for
the clockwise net flows and the almost zero net flows and a traveling wave pattern for
the counterclockwise net flows.

Throughout this paper, the fraction of the flexible boundary being compressed is called the
fraction compressed.

The first two phenomena will be discussed in the parameter studies and the third phenom-
enon will be presented in the case studies. The complex fluid dynamics of valveless pumping
is governed not only by the driving force but also by the physical parameters of the loop of
tubing, such as stiffness constants that represent the elasticity of the two different compliances,
diameter of the tube, circumference of the loop, and the ratio of the length of the (almost) rigid
and flexible boundaries. Our research in this paper is focused on only the parameter studies
from the driving force, since the driving force is the critical factor to produce a net flow around
the loop. Four parameters, frequency, amplitude, compression duration of the driving force and
fraction compressed, are chosen.

In this section, we will first compare the computational models generated by the old and new
forcing functions by the time-averaged fluxes as functions of the period and then investigate the
fluid mechanism of valveless pumping by the parameter studies based on the four parameters
we mentioned above. These parameter studies provide us how carefully we choose a set of
parameters in order to get an efficient flow. In the last subsection, we will observed some
qualitative characters in the motions of flows from the most interesting three cases; maximum
clockwise flow, almost zero flow, and counterclockwise flow.

3.1. Comparison of the computational models generated by the old and new forcing func-
tions by the time-averaged fluxes as functions of the period. In this subsection, we compare
the flows generated by the old and new forcing functions.

Figure 3 displays the time-averaged fluxes as functions of the period of the driving oscilla-
tion. Flows induced by the old and new forcing functions are represented by the circles and
stars, respectively. Each pair of data points summarizes a separate numerical experiment during
the simulated time 100 s. Positive flux denotes a clockwise net flow of the loop of tubing and
negative flux denotes a counterclockwise net flow. The periodic oscillation is applied on the
left 1/3 of the flexible segments of the loop and the amplitude of the target positions A0 = 0.6
cm is chosen. The compression duration d = 0.5 is chosen for the flows driven by the new
forcing function. Other parameters are presented in Tables 1 and 2. The results from Figure 3
are as follows:

• The new forcing function generates much more fluxes in the clockwise direction than
the old forcing function. Note that since the driving force is applied on the left 1/3
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FIGURE 3. The time-averaged flux as a function of the period of the driving
oscillatory are plotted for the flows driven by the old (circles) and new (stars)
forcing functions. Each pair of data points summarizes a separate numerical
experiment during the simulated time 100 s. Positive flux denotes a clockwise
net flow of the loop of tubing and negative flux denotes a counterclockwise net
flow. Parameters, A0 = 0.6 cm and d = 0.5 are chosen.

of the flexible segments of the loop, the clockwise direction of a net flow is the same
direction that has been observed in physical experiments by Liebau [], Kilner [], and
other previous researchers []. The Reynolds numbers for the clockwise net flows driven
by the new forcing function are in the range of 0 and 193, whereas the Reynolds num-
bers for the clockwise net flows driven by the old forcing function are between 0 and
70.

• The two curves are qualitatively similar curves. In both curves,
– Each nonzero data represents an evidence of a net flow existence.
– The direction of flow around the loop is changed several times in the range of

period from 0.2 to 2.
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– The magnitude of flow around the loop is determined by the period. After the
period 2.2 s, the magnitudes of flows in both curves stay very close and the time-
averaged flux tends to 0.2 cm2/s.

– Almost zero flows at some finite periods that are not the extreme cases are ob-
served, although the driving forces are applied on the asymmetric locations that
may produce the asymmetric mechanism to the system.

3.2. Parameter studies. In this subsection, we investigate which parameter set provides more
efficient model of valveless pumping. The four parameters from the driving force, frequency,
amplitude, compression duration of the driving oscillation and the fraction of the flexible
boundary being compressed, are chosen to vary.

This subsection consists of the following parameter studies:

• Parameter study 1: Time-averaged flux vs. Period at A0 = 0.6 cm and d = 0.5 and 1
• Parameter study 2: Time-averaged flux vs. Compression duration at A0 = 0.6 cm and
T = 0.21, 0.68, 1.35, and 3 s

• Parameter study 3: Time-averaged flux vs. Compression duration at T = 0.68 s and
A0 = 0.5 and 0.6 cm

• Parameter study 4: Time-averaged flux vs. Amplitude at d = 0.5 and T = 0.21, 0.24, 0.68,
and 1.5 s

The fraction compressed is chosen by 1/3 for the above cases, which implies that the driving
force is applied on the left 1/3 of the flexible segments.

• Parameter study 5: Time-averaged flux vs. Fraction compressed at A0 = 0.6 cm,
d = 0.5, and T = 0.68 s

In these parameter studies, the time-averaged fluxes are computed on the vertical cross sec-
tion through the middle of the straight segment of tubing at the top of race track and those are
plotted as a function of one of the four parameters listed above for each parameter study. Other
parameters are presented in Tables 1 and 2. Each data point summarizes a separate numerical
experiment of 100 s simulation time. Positive flux denotes the clockwise flow around the loop
and negative flux denotes the counterclockwise flow.

Parameter study 1. Time-averaged flux vs. Period at A0 = 0.6 cm and d = 0.5 and 1.
Since the frequency has been considered as a critical parameter to determine the direction and
amplitude of a net flow around the loop from the previous work [19], we start the parameter
study with varying the frequency.

The choice of the compression duration d = 1 is a natural way to start investigation because
the compression duration is a new parameter introduce in this paper and d = 1 implies that
the driving function is generated by only the compression without relaxation. First, the time-
averaged flux as a function of the period is investigated at A0 = 0.6 cm, d = 1, and fraction
compressed = 1/3 (see the starts in Fig. 4). The maximum flux is observed at T = 0.68 s. This
flow has the clockwise direction and Reynolds number 193. Then, the period (1/frequency) is
fixed at T = 0.68 s and the compression duration is varied. Like a real world problem CPR,
more flux could be obtained around the compression duration d = 0.5 rather than d = 1 (see
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FIGURE 4. The time-averaged flux as a function of the period at the com-
pression durations d = 0.5 (starts) and d = 1 (circles). The amplitude of driving
oscillation A0 = 0.6 cm is chosen.

circles in Fig. 5). Now, the time-averaged fluxes are computed again as functions of the period
at d = 0.5.

Figure 4 displays the time-averaged fluxes as function of the period at the compression
durations d = 0.5 (starts) and d = 1 (circles). The amplitude of driving oscillation A0 = 0.6
cm is chosen. The shape of two curves is quantitatively close. The most of experiments in the
compression duration d = 0.5 (stars) has more net fluxes than ones in compression duration
d = 1 (circles). For the long period like after the period T = 3 s, the magnitudes of flows for
d = 1 are reduced by around half factor of the magnitudes of flows for d = 0.5. Note that
the magnitudes of flows generated by the new forcing function are doubled of ones by the old
forcing function.

The most important result from this parameter study is that the frequency is a crucial factor
to determine the direction and magnitude of a net flow around the loop.

Parameter study 2. Time-averaged flux vs. Compression duration at A0 = 0.6 cm
and T = 0.21, 0.68, 1.35, and 3 s. Figure 5 displays the time-averaged fluxes as functions
of the compression duration at the four periods, T = 0.21, 0.68, 1.35, and 3 s. The amplitude
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FIGURE 5. The time-averaged fluxes as functions of the compression dura-
tion at the four periods, T = 0.21 (squares), 0.68 (circles), 1.35 (stars), and 3 s
(triangles). The amplitude of driving oscillation A0 = 0.6 cm is chosen.

of driving oscillation A0 = 0.6 cm is chosen. From the result based on the Parameter study
1 (Figure 4), the period T = 0.21 s (squares) and T = 0.68 s (circles) has the maximum
counterclockwise and clockwise net flow around the loop, respectively. Other two parameters
T = 1.35 s (stars) and T = 3 s (triangles) are arbitrary chosen. The twenty equal-space
compression durations from 0.1 to 1 are chosen. For all four periods, more fluxes are obtained
if d ̸= 0, which implies that the flow is driven by the periodic motions of compression and
relaxation. More flux is obtained near d = 0.5 for the period T = 0.68 s and between d = 0.5
and d = 0.8 for T = 0.21 s. It is observed in Figure 5 that there exists at least two turning points
(changing flow direction) near d = 0.475 and d = 0.8 for T = 1.35 s and one point near d =
0.25 for T = 3 s. The time-averaged fluxes for T = 0.21 s and T = 0.68 s are, however, all
negative (counterclockwise flow) and positive (clockwise flow) for any compression durations,
respectively.

Overall, the compression duration of the driving oscillation affects not only magnitude but
also direction of a net flow around the loop.
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FIGURE 6. The time-averaged fluxes as functions of the compression du-
ration at the amplitude of the driving oscillation A0 = 0.5 and 0.6 cm. The
period of the driving oscillationT = 0.68 s is chosen.

Parameter study 3. Time-averaged flux vs. Compression duration at T = 0.68 s and
A0 = 0.5 and 0.6 cm. Figure 6 displays the time-averaged fluxes as functions of the compres-
sion duration at the amplitude of the driving oscillation (the prescribed time-dependent target
positions) at A0 = 0.5 and 0.6 cm. The period of the driving oscillation T = 0.68 s is chosen.
More efficient fluxes are obtained around d = 0.5 for A0 = 0.6 cm (triangles) and between
d = 0.4 and d = 0.6 for A0 = 0.5 cm (circles). The magnitudes of flows in A0 = 0.6 cm
are almost doubled as ones in A0 = 0.5 cm over the compression duration range from 0.1 to
1. The amplitude of the driving oscillation also affects the magnitude of a net flow around the
loop.

Parameter study 4. Time-averaged flux vs. Amplitude at d = 0.5 and T = 0.21, 0.24, 0.68,
and 1.5 s. Figure 7 displays the time-averaged fluxes as functions of the amplitude of the driv-
ing oscillation at the four periods, T = 0.21, 0.24, 0.68, and 1.5 s.

As we observed in the previous paper, the results in Figure 7 also show that the amplitude
of the driving oscillation affects the magnitude and direction of the net flow around the loop of
tubing. At the low amplitude of the driving oscillation, the magnitudes of flows are small for
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FIGURE 7. The time-averaged fluxes as functions of the amplitude of the
driving oscillation for the four periods, T = 0.21 (stars), 0.24 (pluses), 0.68
(circles), and 1.5 s (squares). The compression duration of the driving oscilla-
tion d = 0.5 is chosen.

all four periods. The direction of flow is changed at the critical amplitude for the three periods,
T = 0.24, 0.68, and 1.5 s. For T = 0.68 s (circles) and 1.5 s (squares), the flow changes from
the counterclockwise direction to the clockwise direction near A0 = 0.38 cm and A0 = 0.45
cm, respectively. The period T = 0.68 s has the strong clockwise net flows at high amplitude,
whereas the period T = 1.5 s has the weak clockwise net flows. For T = 0.21 s (stars) and
0.24 s (pluses), the net flows have the counterclockwise direction at high amplitude, but one,
T = 0.24 s, has the clockwise flow and the other, T = 0.21 s, has the counterclockwise flow
at low amplitude.

From the Figures 6 and 7, it is obvious to see that the amplitude of the driving oscillation is
also an important factor to determine the magnitude and direction of flow around the loop.

Parameter study 5. Time-averaged flux vs. Fraction compressed at A0 = 0.6 cm,
d = 0.5, and T = 0.68 s. Until now, the left 1/3 of the flexible segments of the loop is chosen
to provide the periodic forcing. In this subsection, the parameter fraction compressed is varied.
The twenty equal-space fractions compressed are chosen from 0 to 0.5. Recall the definition
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FIGURE 8. The time-averaged fluxes as functions of the fraction compressed
at T = 0.68 s, d = 0.5, and A0 = 0.6 cm.

of the fraction compressed. The fraction compressed is defined by the fraction of the flexible
boundary being compressed. If the fraction compressed is equal to 0.3, then it implies that the
driving force is applied on the left 0.3 of the flexible segments of the flow loop.

Figure 8 displays the time-averaged fluxes as functions of the fraction compressed at T =
0.68 s, d = 0.5, and A0 = 0.6 cm. As we expected, the magnitude of the flow is dependent
on the fraction compressed. More interesting phenomenon is that the direction of a net flow is
also changed at the critical value of the fraction compressed. In Figure 8, this critical fraction
compressed is around 0.225. The curve is actually concave down and has negative (counter-
clockwise flows) until the fraction compressed reaches the critical value and then it is increased
very fast and has positive (clockwise flows). It is obvious to see the nonlinearity of fluid from
this curve.

3.3. Case Studies. We have investigated by the parameter studies how a set of parameters
affects the motions of flow driven by valveless pumping. In parameter studies, since the time-
averaged flux is used to show the existence of a net flow and to determine the amplitude and
direction of a net flow around the loop, the detailed fluid dynamics of valveless pumping and
how the fluid markers move around the loop could not presented. In this section, we present the
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three special cases of valveless pumping in order to investigate the detailed fluid mechanism of
valveless pumping. The case studies are based on the results from the curve that is marked with
stars in Figure 4. The amplitude A0 = 0.6 cm, compression duration d = 0.5, simulated time
t = 100 s, and fraction compressed = 1/3 are chosen. Other parameters are given in Tables
1 and 2. The maximum clockwise and countclockwise flows are obviously the first choice of
case studies because the main goal is to produce more flux by the valveless pumping if this
model is applied to the practical applications like CPR or MEMS. The third choice is a case
that has an almost zero net flow around the loop. This choice is also an interesting case because
the symmetric system of fluid around the loop is actually induced by the asymmetry: that is,
the driving force which is applied on the asymmetric location, left 1/3 of the flexible segments
may cause the asymmetry into the flow system. The periods for these three cases are T = 0.21
s for the maximum net counterclockwise flow, T = 0.68 s for the maximum net clockwise
flow, and T = 1.8 s for the almost zero net flow. First, the detailed motion of each flow has
been investigated and compared qualitatively in the following ways:

• Time-averaged fluxes as functions of the pumping cycles computed on the vertical
cross section through the middle of the straight segment of the loop at the top of race-
track

• The motions of wave along the top of the flexible segments over one cycle of the
periodic steady-state

• Fluid mixing
In order to show that the result does not depend on the initial conditions, these three cases

are combined together during a experiment. The period T = 0.68 s (maximum clockwise flow)
is chosen during the first 20 s, the 1/3 of the simulated time t = 60 s, T = 1.8 s (almost zero
flow) during the next 20 s, and T = 0.21 s (maximum counterclockwise flow) is chosen during
the last 20 s. All other parameters are fixed during the simulated time 60 s. The angles from the
center of the computational domain, (x, y) = (8 cm, 4 cm), to the positions of the fluid markers
inside the flow loop are measured during the simulated time t = 60 s, in order to check the
direction of a net flow.

• Flow which is induced by changing the period during a experiment: periods T = 0.68
s for the first 20 s, T = 1.8 s for the next 20 s, and T = 0.21 s for the last 20 s.

Time-averaged fluxes as functions of the pumping cycles. Figure 9 displays the time-
averaged fluxes as functions of the pumping cycles during the simulated time t = 100 s. The
case of maximum net flow in the clockwise direction, almost zero flow, and maximum net flow
in the counterclockwise direction are considered from top and bottom. Each dot represents
a time-averaged flux during the corresponding number of cycle from the beginning t = 0.
Positive flux denotes the clockwise flow and negative flux denotes the counterclockwise flow.
In the top frame (maximum clockwise flow at T = 0.68 s), the time-averaged flow around the
flow loop during t = 100 s tends to 1.9273 cm2/s. The total number of the pumping cycles
is 147. The time-averaged flux curve is rapidly increased until around 15 cycles and the flow
already stays the steady state near 50 cycles. The steady state net flow for T = 0.68 s has the
direction in the clockwise and the Reynolds number is around 193. In the middle frame (almost
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FIGURE 9. The time-averaged fluxes as functions of the pumping cycles
are computed on the vertical cross section through the middle of the straight
segment of tubing at the top of the racetrack. The case of maximum average
flow in the clockwise direction, almost zero flow, and maximum flow in the
counterclockwise direction are considered from top and bottom. Each dot rep-
resents the time-averaged flux during the corresponding number of cycle from
the beginning t = 0.

zero flow at T = 1.8 s), the time-averaged flow around the flow loop during t = 100 s tends
to 0. The curve stays almost constant near zero through the simulated time t = 100 s. The
steady state net flow for T = 1.8 s has an almost zero net flux. In the bottom frame (maximum
counterclockwise flow at T = 0.21 s), the curve is smoothly decreasing and the time-averaged
flow around the flow loop during t = 100 s tends to -0.8951 cm2/s. The steady state net flow
for T = 0.21 s has the direction in the counterclockwise and the Reynolds number is around
89.

The motions of wave along the flexible segment. Although we presented the motions of
wave along the flexible segment for the special cases in the previous paper, the fluid mechanism
induced by the motions of wave along the flexible segment is so much interesting to present
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one more time in this paper. Figure 10 displays the sixteen equal-time snapshots over one
cycle of the periodic steady state motions along the top of the flexible segment. The maximum
clockwise net flow, almost zero net flow, and maximum counterclockwise net flow is considered
at the top, middle, and bottom frame, respectively. Remind that in all three cases, the driving
forces are applied on the left 1/3 of the flexible segment, that is the interval from (4 cm, 2.6
cm) to (6.7 cm, 2.6 cm) in the computational rectangular box. In the top frame (maximum
clockwise flow), the wave motions along the flexible segment is associated with a standing
wave pattern with one node at near the edge of the driven part of the flexible boundary. The
number of waves along the flexible segment is just one (long wave), and the amplitude of
the physical boundary positions is big enough to produce the active motions of the flexible
boundary. Note that the diameter of the tube is 0.6 cm. In the middle frame (almost zero
flow), there is also a standing wave pattern with one node at near the edge of the driven part
of the flexible boundary. This wave motions along the flexible boundary, especially the driven
part of the flexible boundary, remind us our choice of the forcing function that consists of the
compression for the half of the period and the relaxation for the rest half of the period because
of the choice of the compression duration d = 0.5. The motions of the physical boundary
track almost the motions of the target positions. If we look at very carefully this figure, then
the half of curves are located closely to the initial position of the flexible boundary at y = 2.6
cm. In the bottom frame (maximum counterclockwise flow), there is a beautiful traveling
wave propagating to the right from the edge of the driven part of the flexible boundary. We
have actually observed in the movie that some fluid markers follow the motions of the traveling
waves along the flexible boundary with vortices in the counterclockwise direction, which might
be observed in the peristaltic mechanism.

From these wave motions along the flexible boundary, we could see the phase differences
between the target positions and the physical boundary positions. There are substantial phase
differences for the maximum clockwise and counterclockwise net flows, but almost zero phase
difference for the case of the almost zero net flow.

Flow mixing. Figures 11 and 12 displays the positions of the 160 fluid markers inside the
flow loop of the maximum clockwise net flow at T = 0.68 s. The 40 fluid markers marked
with stars, pluses, circles, and triangles are chosen from near the inner boundary to the outer
boundary at the initial time t = 0. Four equal-time snapshots from t = 0 s to t = 6 s are plotted
in Figures 11 and 12. In the bottom frame of Figure 11, the poiseuille flow is observed between
the almost rigid segments at t = 2 s (only three cycles of the driving force are applied). We can
see that the fluid markers are mixed without pattern at t = 6s in the bottom frame of Figure 12.
Note that the time t = 6 s is very small time compared the simulated time considered for most
of other simulations. It is a surprise how fast we could get the flow mixing by the valveless
pumping.

Flow which is induced by changing the period during an experiment: periods T = 0.68
s for the first 20 s, T = 1.8 s for the next 20 s, and T = 0.21 s for the last 20 s. Figure 13
displays the angles from the center, (x, y) = (8 cm, 4 cm), to the current positions of the two
arbitrary fluid markers as a function of the time. The three periods, T = 0.68 s (maximum
clockwise flow) for the first 20 s, T = 1.8 s (almost zero flow) for the next 20 s, and T = 0.21
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FIGURE 10. The motions of wave along the flexible segment: Sixteen equal-
time snapshots over one cycle of the periodic steady-state wave motions along
the top of the flexible segment are plotted. The case of maximum average
flow in the clockwise direction, almost zero flow, and maximum flow in the
counterclockwise direction are considered from top and bottom. The standing
wave patterns are observed for the cases of the maximum clockwise net flow
and the almost zero net flow and the traveling wave pattern are observed for the
case of the maximum counterclockwise net flow. In all these cases, the driving
force is applied on the left 1/3 of the flexible segment, i.e., to the interval from
(4 cm, 2.6 cm) to (6.7 cm, 2.6 cm).

s (maximum counterclockwise flow) for the last 20 s, are chosen. All other parameters are
fixed during the simulated time t = 60 s. The curves are rapidly increased for the first 1/3 of
the simulated time, 20 s, with the period T = 0.68 s and then stay almost constants during the
middle 1/3 of the simulated time, 20 s, with the period T = 1.8 s and then smoothly decreased
for the last 1/3 of the simulated time with the period T = 0.21 s. This shows that the direction
of the two fluid markers is changed from clockwise, and then almost zero net flux, and then to
counterclockwise. In this figure, we could only observe that the direction around the flow loop
is changed by changing the period. When we watch the movie of this special case, not only the
direction of a net flow but also the speed of fluid markers and the motions of wave along the
flexible boundary are also changed by changing the period during an experiment (see []). This
case study shows that the result does not depend on the initial condition.
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FIGURE 11. Flow mixing: The positions of the 160 fluid markers inside the
flow loop of the maximum clockwise net flow are plotted. Four equal-time
snapshots from t = 0 s to t = 6 s are plotted.

4. CONCLUSIONS

We have presented the simulations of flows driven by pumping without valves using a new
driving force that consists of the periodic motions of compression and relaxation. In the current
standard cardiopulmonary resuscitation (CPR), the optimal compression duration is chosen as
1/2. This fact was the motivation to change the driving forcing function and we could get a
more efficient model of valveless pumping with a new driving forcing function.

As we showed in the previous our paper, the two main phenomena of valveless pumping
have been also presented in this paper: (1) Existence of a net flow around the loop of tubing
despite the lack of valves. (2) The direction and magnitude of the driving oscillation are depend
on the parameters from the driving force, such as frequency, amplitude, compression duration,
and fraction compressed. Our main interest is how these parameters affect the direction and
magnitude of a net flow around the loop. The frequency is the most crucial factor to determine
the direction and magnitude of a net flow around the loop. The critical points of the amplitude
and fraction compressed that change the direction of a net flow around the loop are observed.
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FIGURE 12. Continuation of Figure 11.

All three parameters, amplitude, compression duration, and fraction compressed, affect on the
magnitude of a net flow, too.

The valveless mechanism in a circulatory system is interesting and attractive research be-
cause of not only the interesting fluid dynamics itself but also the various applications in the
area of biology, biomedical engineering and engineering, such as a source of circulation in em-
bryo, other valveless biological systems, thoracic pump mechanism in CPR, and MEMS. The
main goal of these real world applications is to provide the more net flux around the circulatory
system. For this reason, we chose the three special cases, the maximum clockwise, almost
zero, and maximum counterclockwise flows in order to study the flow mechanism of valveless
pumping in details. We presented also the result does not depend on the initial condition and
showed flow mixing by valveless pumping.
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