The Impact of Southern Ocean Thermohaline Circulation on the Antarctic Circumpolar Current Transport

  • 김성중 (한국해양연구원부설극지연구소) ;
  • 이방용 (한국해양연구원부설극지연구소)
  • Published : 20060000

Abstract

The observed ocean barotropic circulation is not completely explained by the classical wind-driven circulation theory. Although it is believed that the thermohaline forcing plays a role in the ocean barotropic circulation to some degree, how much the thermohaline forcing contributes to the barotropic circulation is not well known. The role of thermohaline circulation driven by changes in temperature and salinity in the Southern Ocean (SO) water masses on the Antarctic Circumpolar Current (ACC) transport is investigated using a coupled ocean - atmosphere - sea ice - land surface climate system model in a Last Glacial Maximum (LGM) context. Withthe implementation of glacial boundary conditions in a coupled model, a substantial increase in the ACC transport by about 75% in 80 years of integration and 25% in the near LGM equilibrium is obtained despite of the decreases in the magnitude of wind stresses over the SO by 33% in the transient time and 20% in the near-equilibrium. This result suggests that the increase in the barotropic ACC transport is due to factors other than the wind forcing. The change in ocean thermohaline circulation in the SO seems to play a significant role in enhancing the ACC transport in association with the change in the bottom pressure torque.

Keywords

References

  1. Bryan, K. and LJ. Lewis. 1979. A water mass model of the world ocean. J. Geophys. Res., 84(C5), 2503-2517 https://doi.org/10.1029/JC084iC05p02503
  2. Bryan, K. and M.D. Cox. 1972. The circulation of world ocean: A numerical study, I, A homogeneous model. J. Phys. Oceanogr., 2, 319-335 https://doi.org/10.1175/1520-0485(1972)002<0319:TCOTWO>2.0.CO;2
  3. Cai, W. 1994. Circulation driven by observed surface thermoha-line fields in a coarse resolution ocean general circulation model. J. Geophys. Res., 99(C5), 10163-10181 https://doi.org/10.1029/93JC03565
  4. Cai, W. and P.G. Bains. 1996. Interactions between thermoha-line- and wind-driven circulations and their relevance to the dynamics of the Antarctic Circumpolar Current in a coarse-resolution global ocean general circulation model. J. Geophys. Res., 101(C6), 14073-14093 https://doi.org/10.1029/96JC00669
  5. England, M.H. 1993. On the formation of global-scale water masses in ocean general circulation models. J. Phys. Oceanogr., 23,1523-1552 https://doi.org/10.1175/1520-0485(1993)023<1523:RTGSWM>2.0.CO;2
  6. Fairbanks, R.G. 1989.A 17000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637-642 https://doi.org/10.1038/342637a0
  7. Fieux, M., C. Andrie, P. Delecluse, A.G. Ilahude, A. Kartavtseff, F. Mantisi, R. Molcard, and J.C. Swallow. 1994. Measurements within the Pacific Indian Ocean throughflow region. Deep-Sea Res., 41, 1091-1130 https://doi.org/10.1016/0967-0637(94)90020-5
  8. Flato, G.M. and WD. Hibler. III. 1992. Modelling pack ice as a cavitating fluid. J. Phys. Oceanogr., 22, 626-651 https://doi.org/10.1175/1520-0485(1992)022<0626:MPIAAC>2.0.CO;2
  9. Gates, WL. and AB. Nelson. 1975. Anew (revised) tabulation ofthe Scripps topography on a 1$^{\circ}$ global grid. Part II: ocean depths. R-1227-1-ARPA, The RAND Corporation, Santa Monica, CA, 132 pp
  10. Gent, P.R. and I.C. McWilliams. 1990. Isopycnal mixing in ocean circulation models. J. Phys. Ocenaogr., 20,150-155 https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
  11. Gill, AE. and K. Bryan.1971.Effects of geometry on the circulation of a three-dimensional southern-hemisphere ocean model. Deep Sea Res., 18, 685-721
  12. Gordon, AL. 1986. Interocean exchange of thermocline water. J. Geophys. Res., 91, 5037-5046 https://doi.org/10.1029/JC091iC04p05037
  13. Greatbatch, R.J., AF. Fanning, and AD. Goulding. 1991. A diagnosis of interpentadal circulation changes in the north Atlantic. J. Geophys. Res., 96(C12), 22009-22023 https://doi.org/10.1029/91JC02423
  14. Hidaka, K. and M. Tsuchiya. 1953. On the Antarctic Circumpolar Current. J. Mar. Res., 12, 214-222
  15. Holland, WR. 1973. Baroclinic and topographic influences on the transport in western bonndary currents. Geophys. Fluid Dyn., 4, 187-210 https://doi.org/10.1080/03091927208236095
  16. Kennet, J.P. 1977.Cenozoic evolution of Antarctic glaciation, the circum-Antarctic oceans and heir impact on global paleoceanography. J. Geophys. Res., 82, 3843-3859 https://doi.org/10.1029/JC082i027p03843
  17. Kim, S.-J., G.M. Flato, G.J. Boer, and N.A McFarlane, 2002. A coupled climate model simulation of the Last Glacial Maximum, Part 1: Transient multi-decadal response. Clim. Dyn., 19, 515-537 https://doi.org/10.1007/s00382-002-0243-y
  18. Kim, S.-J., G.M. Flato, and G.J. Boer. 2003. A coupled climate model simulation of the Last Glacial Maximum, Part 2: approach to equilibrium. Clim. Dyn., 20, 635-661 https://doi.org/10.1007/s00382-002-0292-2
  19. Lukas, R., T. Yamagata, and J.P. McCreary. 1996. Pacific low-latitude western bonndary currents and Indonesian throughflow. J. Geophys. Res., 101, 12209-12216 https://doi.org/10.1029/96JC01204
  20. Macdonald, AM. and C. Wunsch. 1996. An estimate of the global ocean circulation and heat flux. Nature, 382, 436-439 https://doi.org/10.1038/382436a0
  21. McWilliams, J.C., W.R. Holland, and J.S.H. Chow. 1978. A description of numerical Antarctic Circumpolar Currents. Dyn. Atmos. Ocean, 2, 213-291 https://doi.org/10.1016/0377-0265(78)90018-0
  22. Mertz, G. and D.G. Wright. 1992. Interpretations of the JEBAR term. J. Phys. Oceanogr., 22, 301-305 https://doi.org/10.1175/1520-0485(1992)022<0301:IOTJT>2.0.CO;2
  23. Munk, W.H. and E. Palmen. 1951. On the dynamics of the Antarctic Circumpolar Currents. Tellus, 3, 53-55 https://doi.org/10.1111/j.2153-3490.1951.tb00776.x
  24. Nowlin, W. D., Jr. and J.M. Klinck. 1986. The physics of the Antarctic Circumpolar Current. Review of Geophysics, 24, 469-491 https://doi.org/10.1029/RG024i003p00469
  25. Orsi, A.H., G.C. Johnson, and J.L. Bullister. 1999. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55-109 https://doi.org/10.1016/S0079-6611(99)00004-X
  26. Pacanowski, R.C., K. Dixon, and A Rosati. 1993. The GFDL modular ocean model users guide. GFDL Ocean Group Tech Rep 2. Geophysical Fluid Dynamics Laboratory, Princeton, USA, 46pp
  27. Peltier, W.R. 1994. Ice age paleotopography. Science, 265, 195-201 https://doi.org/10.1126/science.265.5169.195
  28. Pickard, G.L. and W.J. Emery. 1990. Descriptive physical oceanography, Fifth Enlarged Edition (in SI units). Pergamon Press, Oxford, UK
  29. Read, J.F. and R.T. Pollard. 1993. Structure and transport of the Antarctic Circumpolar Current and Agulhas Return Current at 40E. J. Geophys. Res., 98(C7), 12281-12295 https://doi.org/10.1029/93JC00436
  30. Rintoul, S.R., C.W. Hughes, and D. Olbers. 2001. The Antarctic Circumpolar Current System in Ocean circulation and climate. Academic Press, Edited by Siedler, G., Church, J., Gould, J
  31. Semtner, A.J. 1976. A model for thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379-389
  32. Stommel, H. 1957. A survey of ocean current theory. Deep Sea Res., 4, 149-184 https://doi.org/10.1016/0146-6313(56)90048-X
  33. Toggweiler, J.R. and H. Bjornsson. 2000. Drake Passage and paleoclimate. J. Quat. Sci. 15, 319-328 https://doi.org/10.1002/1099-1417(200005)15:4<319::AID-JQS545>3.0.CO;2-C
  34. Treguier, A.M. and J. C. McWilliams. 1990. Topographic influences on wind-driven, stratified flow in a $\beta$-plane channel: an idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20, 321-343 https://doi.org/10.1175/1520-0485(1990)020<0321:TIOWDS>2.0.CO;2
  35. Warren, B.A, J.H. LaCase, and P.E. Robins. 1996.On the obscurantist physics of 'Form Drag' in theorizing about the Circumpolar Current. J. Phys. Oceanogr., 26, 2297-2301 https://doi.org/10.1175/1520-0485(1996)026<2297:OTOPOD>2.0.CO;2
  36. Whitworth, T. and R.G. Peterson. 1985. Volume transport of the Antarctic circumpolar current from bottom pressure measurements J. Phys. Oceanogr., 15, 810-816 https://doi.org/10.1175/1520-0485(1985)015<0810:VTOTAC>2.0.CO;2
  37. Wolff, J.-O., E. Maier-Reimer, and D.J. Olbers. 1991. Wind-driven flow over topography in a zonal-plane channel: a quasi-geostrophic model of the Antarctic Circumpolar Current J. Phys. Oceanogr., 21, 236-264 https://doi.org/10.1175/1520-0485(1991)021<0236:WDFOTI>2.0.CO;2