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The Analytic and Numerical Solutions of the 1% -layer
and 2% -layer Models to the Strong Offshore Winds.

HYONG SUN LEE
Korea Naval Academy, Chinhae City, Korea. 645-797

The analytic and numerical solution of the 1% -layer and 2% -layer models are derived. The large coas-
tal-sea level drop and the fast westward speed of the anticyclonic gyre due to strong offshore winds using
two ocean models are investigated. The models are forced by wind stress fields similar in structure to the
intense mountain-pass jets(~20 dyne/cm’) that appear in the Gulfs of Tehuantepec and Papagayo in the
Central America for periods of 3~7 days. Analytic and numerical solutions compare favorably with ob-
servations, the large sea-level drop (~30 cm) at the coast and the fast westward propagation speeds (~13

km/day) of the gyres.

The coastal sea-level drop is enhanced by several factors: horizontal mixing, enhanced forcing, coastal
geometry, and the existence of a second active layer in the 2 -layer model. Horizontal mixing enhances ._
the sea-level drop because the coastal boundary layer is actually narrower with mixing.

The forcing t/h is enhanced near the coast where % is thin. Especially, in analytic solutions to the 2% -
layer model the presence of two baroclinic modes increases the sea-level drop to some degree. Of theses
factors the strengthened forcing 7/ has the largest effect on the magnitude of the drop, and when all of
them are included the resulting maximum drop is -30.0 cm, close to observed values.

To investigate the processes that influence the propagation speeds of anticyclonic gyre, several test

wind-forced calculations were carried out. Solutions to dynamically simpler versions of the 1

% -layer

model show that the speed is increased both by B-induced self-advection and by larger h at the center of
the gyres. Solutions to the 2% -layer model indicate that the lower-layer flow field advects the gyre west-
watd and southward, significantly increasing their propagation speed.

The Papagayo gyre propagates westward at a speed of 12.8 km/day, close to observed speeds.

INTRODUCTION

The coastal-ocean response to the strong offshore
winds in the Gulfs of Tehuantepec and Papagayo in
the Central America has been stimulated by satellite
observations (Stumpf and Legeckis, 1977). These
observations and others reveal that the wind events
force a large drop in coastal sea level, coastal upwel-
ling, and the formation of an anticyclonic gyre that
subsequently propagates westward and southward.

The strong offshore winds in the areas above are
almost everywhere separated from the Pacific re-
gion by the mountainous topography of southern
Mexico and Central America. However, air flows
swiftly through three passes down the resulting pres-
sure gradient, and forms narrow, intense jets in the
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Gulfs of Tehuantepec, Papagayo and Panama that
blow almost directly offshore (Fig. 1). The wind jets
off Tehuantepec are about 200 km wide, and extend
abut 400 km offshore, and attain maximum wind
stress values of the order of 20 dyne/cmé (Roden,
1961).

In response to the strong offshore wind forcing,
water moves rapidly offshore along the wind axis as
it strengthens. Upwelling at the coast lowers coastal
sea-level of the order of 30 cm, sea surface tem-
perature (SST) drops by about 10°C, and en-
trainment cools SST farther offshore (Roden, 1961,
Blackburn, 1962 and Alvarez et al., 1989). Stumpf
(1975), and Stumpf and Legeckis (1977) showed
that an anticyclonic gyre develops on the western
flank of the jet axis and propagates westward with a
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Fig. 1. A map showing the locations of the three mountain-pass jets. Light and dark shaded regions indicate where the
elevation of the topography is greater than 650 and 2000 m, respectively. The locations of Manzanillo(MNS),
Acapulco(ACA), Salina Cruz(SC) and San Jose(SJ) are indicated. The jets occur during the winter when high-
pressure systems develop over the Gulf of Mexico. Air flows rapidly through the mountain passes down th pres-

sure gradient. (after McCreary et al, 1989).

phase speed of about 15 cm/s (13 km/day).

Several theoretical studies have looked at the
ocean's response to offshore winds. Millot and Cre-
pon(1981), and Crepon and Richez(1982) found
asymptotic analytic solutions to a linear two-layer
model when the wind was directed perpendicular
to the shore, constant in space, and a step function
of time. They found that a coastal sea-level drop(d)
and no Kelvin waves were generated by the wind,
but did not describe the mechanism of d. Hua and
Thomasset (1983) investigated the effects of coast-
line geometry on coastal upwelling using a two-
layer, numerical model that allowed entrainment
into the surface layer to occur whenever the bulk
Richardson number was smaller than a critical
value. They found that entrainment played an im-
portant role in determining the final shape of the
upwelling centers in the nearshore region, but did
not adequately simulate the development of the
offshore gyre. Clarke (1988) studied the response
in the Gulf of Tehuantepec using a simple 1 -lay-
er model. He argued that the structure of a hy-
pothesized inertial turning of the wind jet, was the

primary cause of the anticyclonic eddy-like fea-
ture; however, according  to Roden (1961), A.
Trasvina et al (1995) and 1900-1979 COADS
wind climatology for the months of November
through February, there is little evidence for such
a turning, with the wind extending 400-500 km
directly offshore in the Gulf of Tehuantepec.

The observed gyres propagate offshore at speeds
nearly twice the linear, non-dispersive Rossby wave
speed C, = Bg' H/f® for a given parameters (Table 1)
at 14.5 N, the predicted Rossby wave speed is only
3.5 km/day, much smaller than the observed speed
of 7.5 km/day. Such a large propagation speed has
not appeared in previous modelling studies of iso-
lated eddies. McWilliams and Flierl (1979), and
Nof(1981) demonstrated that in a quasi-geostrophic
model C, is the upper limit for the westward pro-
pagation speed of an isolated eddy. Matsuura and
Yamagata(1982) showed that anticyclonic (cyclonic)
gyres propagate westward at a speed slightly faster
(slower) than C, due to larger (smaller) layer thick-
ness at the center of the gyre. Smith and Reid (1982)
noted that isolated eddies in their 1) -layer prim-
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itive-equation model all had propagation speeds less
than C,.

In this paper, the large sea level drop and fast
westward speed of gyre are investigated using four
ocean models: linear and nonlinear versions of each
a 1) -layer and a 2 -layer model. The detail deri-
vation of the solutions to the 1% -layer model are
shown in McCreary et al (1989).

THE MODEL OCEAN
Equations of Motion

a. The Linear 1 -layer model: The linear 1% -
layer model has a single, active layer of density p,
overlying a deep, inert layer of density p, where the

pressure gradient is set to zero. Linearized equations
of motion for the system are

U~ fo+p. =T /H+v,Vu
vit+fu+p, =7 /H+1, V2 (1a)
h+H(@u: +1,)=0,

and
p=gh-H) (1b)
The continuity equation in (1a) can be replaced with

%+H(ux+vy)=0, (1o
where ¢’ = g'H. Common variables, u and v are
directed eastward and northward, respectively, the
instantaneous thickness of the surface layer is h and
its initial value is H, p is the pressure in the layer, f
is the Coriolis parameter, v, is the coefficient of
horizontal eddy viscosity, g=(4p/P)g where
Ap=p,—p,,p=(p,+p;)/2, and g is the acceleration
of gravity. The ocean can be forecd either by a mer-
idional wind field T’ or by a zonal wind field ©*. Fi-
nally, sea level d is related to p and 4 by

d=p/g =(Ap/pYh ~H) )

b. The Linear 2 ) -layer model: The linear 2 -
layer model has a second active layer of density

p, overlying a deep, inert layer of density p,.

Equations of motion are
Uy = f 0, +py =8, TH +0, Vi
Vy + fu; +py, = 8,T/H, +1, V0, (3a)
hy +H; (uy, +0;,) =0,

and the p, —fields in both layers are

P1=8 &Py —Hy) + pss(hy,—H)))
D2=gEpyh~Hq) + psy(h,—H,). (3b)
The subscript i in (3a) is a layer index (i =1, 2),

and common variables are defined the same as in
equations (1). The quantity &, is the Kronecker del-
ta symbol, ¢ is the coefficient of thermal expansion
(assumed constant), and density differences be-
tween layers are p;; =p; —p;

Equations (3a) can be summarized in the column
— vector form, ' '

Ui —fV+P. =7/H,+v,VU
V+ fU+Py = 7/H +0,VV (4a)
A P+U+V, =0,
q1) | ) . 7
where ¢ = a5 with g; being u;, viorp;, T° = 0P
v : :
7= o | and A is the martix
A Ay 4y 1 VH, -1H, Ab
T |%a an| 5 =VH, py/(H,p3) (4b)
Solutions to (4a) can be represented as ex-

pansions in the two baroclinic (vertical normal)
modes of the system,

91y -
q= (qzj =g10 + 40, (52)

where the modes ¢, are the eigenfunctions of matrix A

1
% =|4~a n)/a 12} ’ (5b)

and are associated with the eigenvalues
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o =it = L@y +az) + (V" Jl@n-anf
1
+dapay]® . (5¢)

The equations of motion governing each mode
are obtained by inserting (52) into (4a) and taking
the dot product of the eigenfunctions of the adjoint
of A,

#n =[1,(A —a1)/a,]. The result is

iim —f’l)n +an ={/ﬂn
Wt + filn +Puy =T /9y 6)
Prt/CE+lm + Uy =0

where #, = H,[1+{(As —ay1)¥/a,a5]. Note that e-
quations (6) are identical in form to equations (1c)
for the 1% -layer model, differing only in the values
for ¢;2 and A,

With the aid of (5a) and (5c), sea level can also
be expressed as

d=p/g=d,+3,=@,+P5)V8, M

so that the total sea-level drop is just sum of each
drop associated with each mode.

¢. The nonlinear 1% -layer model: Equations of
motion for this system are

(hu): + (uhue ) +(Vhu )y — fhv+hpe =T +0, Vi(hu)
(7 V) +(uh V) +(VR D)y + fhu +hpy
=7 +v, VXh v)(8a)
he+(u) +(ho)y =
T; +uly + Ty =Q/m — (T =T )/ h +k, V2T,

and the pressure gradient is
Vp = eg V(T ~T,)] - %Sgh % (8b)

Common variables are defined the same as in (1).
Note that, because the surface temperature T is not
constant in this thermodynamic model, Vp includes
the extra term-% egh VT. Additional quantities are
T. and T., the temperatures of the deep ocean and
the water entrained into the surface layer, respec-
tively. Strictly speaking, 7. must equal 7, in the
nonlinear 1% -layer model. Three thermodynamic
processes affect T: the heat flux Q through the o-
cean surface, horizontal diffusion of heat with coef-
ficient k,, and entrainment described by the velocity

we . Sea level is given by .
d =eh(T -T,)~H(T -Ty)], ©)

where T, is the initial value of T. Due to the non-
linear dependence of d on h and T, sea level can

Table 1. Parametes for all the ocean models used in this paper unless specified otherwise. All the values are chosen as

reallistically as possible for the Gulf of Tehuantepec

Parameter Notation Value
Initial upper-layer thickness H, 50 m
Initial lower-layer thickness H, 250 m
Mode-1 characteristic thickness H, 201.5 m
Mode-2 characteristic thickness H, 66.5 m
Entrainment thickness H, 50 m
Initial upper-layer temperature T, 29°C
Deep-layer temperature, 1% -layer model T, 12°C

. Second-layer temperature, 2J -layer model T, 12°C
Deed-layer temperature, 2% -layer model T, 0°C
Coefficient of thermal expansion € 3x10* C*
Thermodynamic time constant t, 0.125 day
Heating time constant b 50 day
Horizontal mixing coefficients v, ky 210" cm’/s
Corjolis parameter at 16°N f 4%10%™
Coriolis parameter at 11°N f 2.77x10%*
Acceleration of gravity g 980 cm’/s
Reduced-gravity acceleration g' 5 cm’fs
Characteristic speed, 1) -layer model c 158 cm/s
Mode-1 characteristic speed 17 33.2 cm/fs
Mode-2 characteristic speed c; 140.7 cm/s
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only drop to a minimum value of -eH (T, —T,), wh-
ich for the given parameters in Table 1 is -25.5 cm.
A similar limit does not exist in the linear models
since T does not change, nor does it exist for the
nonlinear 2% -layer model discussed next.

The surface heat flux(Q) and entrinment (w.) are
given by as in McCreary et al (1989)

o=La,-1 (10)
and
(He —h)z/(teHe) h<He
We = 0 otherwise. a1

According to (10) and (11), ¢, is a measure of the
e — folding time for the upper ~ layer temperature to
relax back to T,. Entrainment exists only when h is
less than a specified value H. and increases par-
abolically toward a maximum value of Hof. as A
goes to zero. The entrainment time scale z. must be
small enough to ensure that the interface does not
surface in intense upwelling regions, otherwise solu-
tions are not particularly sensitive to its value.

d. The nonlinear 2 -layer model: This model
has two active layers, as used by McCreary and
Kundu (1988). Equations of motion in the upper —
layer, denoted by 1, are

(hyu )y +(@ih ) + (A )y — fhyo
+h P =T + @ity +0, VA(hquy)
(B0 + (1010 + (VR )y + fRouy
+hipy, =T +@e 0+, VAh,0) (12a)
hy+(Byp)e +(R10)y = @
Ty +u T+ 0Ty, = QM @ (T~ T Yh+h, V2T,

and the lower layer equations, denoted by 2, are

(hotto): + (ki ot y)s +(Vshou5)y — fhyUy+hop,
=—@ety+ 0, Vi(hou,)
(B0 +(u2h V) +(Vh0y)y + fhyuy +hopy,
=—@. V,+ 0, VA(h,0,)
ho + By +(hy0)y =—% 12b)
T, =0. "

Pressure gradients in the two layers are given by

1
Vp, =g V[h(T,-T3) +hAT,~T5)]- Eé'gh VT,
Vp,=eg(T,~T3)V(hy+hy), (12¢)
and sea level d is

d =eh (T, ~T3)+h(T,~T3)]—€lH(To —T5)
+H(T,-T53)], (13)

where T, is the temperature of the deep ocean. Note
that the sea-level drop is not as severely limited as
for the nonlinear 1% -layer model because of the ad-
ditional dependence on £,.

Schemes and Parameters

Analytic and numerical schemes are the same as
those in McCreary et al (1989)1 The details must be
referred in their schemes. The numerical scheme of
the nonlinear models integrate the temperature
equation for the upper-layer temperature field.
Analytic solutions are found in either an unbounded
basin or a semi-infinite basin at y = 0. For the num-
erical solutions assuming a rectangular basin, boun-
dary conditions on the northern, eastern and south-
em boundaries are the no — slip conditions,

ui=1_)i=0, Tm =0, hm=0 (14&)

where as on the western boundary they are the open
conditions

u,=v,=0, T,=0, h, =0

in in in in

(14b)

where the subscripts i and n are a layer index (i = 1,
2), and a partial derivative in a direction normal to
the boundary, respectively.

The grid dimensions are Ax =Ay =20 km, and
the time step is Az =30 min, some calculations are
also catried out on a finer grid with Ax =Ay =5 km
and Ar = 6 min. The choice of time step is chosen to
be just small enough to satisfy the CFL condition:

At < Ax/(2\2¢).

The model oceans are forced by wind fields sim-
ilar in strength and structure to the Tehuantepec and
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Fig. 2. A schematic diagram illustrating the spatial and
temporal structutes of the wind fields forcing the
Tehuantepec and Papagayo solutions. Both jets
are directed off-shore, are 280 km wide and 400
km long, and the absolute value of the maximum
stress is 20 dyne/cn?’ (after McCreary et al, 1989).

Papagayo jets. They have the separable form
=X ()Y ()T (15)

where 7 is always directed offshore.

Figure 2 illustrates the wind fields that force all
the numerical solutions, The figure shows the lo-
cations of the wind fields, as well as their spatial
and temporal structures, X(x), Y(y) and I(#). For
the Tehuantepec wind, the zonal structure is

l[1+cosz—ﬂ(fl’")] | —xm | <x 42
B 2 o (16)
X@x)= 0 otherwise.

where x, =700 km and x,=280km, and mer-

idional structure is

e @an
Yiy)= 0 otherwise
where y»=16 N and y,=400km. For the Pa-
pagayo wind, the structures are similarly defined,

with x and y interchanged and with x, =1200 km
and y, =11 N. The time dependence of the wind,

defined by

1 t
5[1 —cos27r7;] t<t,

0=, 18)

otherwise.

with ¢z, = 6 days, The strength of the wind is 7,=-20
dyne/cm’.

Parameters for the ocean models are set to values
that are as realistic as possible and listed in Table 1.
For most of the solutions 7, =T ,; propetties of solu-
tions with T, =T, are discussed in Section 3. The
temperature of the water entrained into the surface
layer is always T,. The Coriolis parameter f is either
constant or given by f= 2 Qsin(y/R,), where Q =
2mday and R.=6370 km is the radius of the"earth.
When f is constant, it has the value f= 4.0x 107 5™
for the Tehuantepec case and f=2.77x10°s" for
the Papagayo case.

WIND - FORCED SOLUTIONS
Solutions to the 1% -layer Model

a. Analytic solutions: In this Section, analytic
solutions are found on the f~plane in 3 different si-
tuations: for a spatially uniform, switched —on
wind in semi — infinite ocean, for a spatially boun-
ded wind patch without horizontal mixing, and for
a wind periodic in x and t with horizontal mixing.
In order to illustrate as clearly as possible the im-
portant physical processes, solutions are arranged
in a hierarchy of increasing dynamical complexity.
Derivations and discussions of the first two solu-
tions must be referred in McCreary et al (1989).

i. Uniform meridional wind, semi-infinite basin:
With a northern boundary at y = 0, the forcing has
the form 7 =7,J(1), f is constant, and the solution is

T

fH(l—e”y Yo p=cie“yg

FH
19)

where o = fic is the reciprocal of the Rossby radius
of deformation. According to (19) and (2), sea level

u= L;H(l—e“y)g’,v=
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Fig. 3. Coastal(y =0)sea-level drop at day 3 with mixing 4 and without mixing 4, (left panel), showing maximum
drops of -16.8 cm and -14.5 cm, respectively. The interface structures A%, and Ak, , along the wind axis (x =0)
at day 3 (right panel), showing that the decaying structure with mixing is more narrower, and so steeper.

at the coast is d =p/g=-16.1cm (at 3 days) for the
given parameter.

ii. Wind patch, semi-infinite basin: For this solu-
tion, the forcing has the spatially limited form (16
and 17) and fis constant. With the assumptions that
the wind is slowly varying in time and large scale
space, the solution is

u= %X[Y—Y(O)e"y]g + ;;‘;Xx[Yy —a¥ (0)e”]
[i5@) ar
b XY Y O —%Xxxw ~¥(0)e”]
[i5) ar (20)
cT, 21, 2y a
r= XY e T HY, T XYY (0]
J:)%)‘(r) dr

Equation (20) clearly shows the direct coun-
terparts of those in solution (19) and the Ekman
pumping terms. The second terms of u and v des-
cribe two counter-rotating gyres. The largest drop in
coastal sea level is -14.1 cm (at 3 days). There are
no coastal Kelvin waves in (20)

iii. Wind periodic in x and t, semi— infinite basin,
horizontal mixing: For the analytic solutions to e-

quations (1) with horizontal mixing, we simplify the
forcing to be independent,of y and periodic in space
and time by choosing the functions in (16-18) to be

Y(y) =1, I(t) = -cos of and X (x)=%(1 +coskx)

where 0=2n/t ,and k =27/x ,

Then, the forcing is
7 =—(1y/2)(1+cos kx ) cos o't

The solution is straight forward but algebraically
lengthy, and so the derivation is not shown here and
must be referred in Lee (1990). According to his e-
quations (B18) and (B21), the coastal sea-level
response at y=0 is

d =d ,+d. +ds =a cos(kx + ot + D) +a.cos

(—kx + ot + D. )+ ascos(ot + Dy), (21a)

where a and @ are amplitude and phases(Table 2),
respectively. Then, along the wind axis at x = 0 is

d@x=0)=ae'V cos(—1,y + 0t + P, + a,e’2V cos
(py +ot+ D)
+ ase’V cos(—I1,y + Ot + Dy)+a eV cos
Iy tot+dy)
+ase! Wy cos(—1 ',y + 0t + Ds)+age! 2 cos
(' +or+ ). (21b)
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Table 2. Amplitudes (cm) and phases (radian) of sea lev-
¢l shown in equations (22)

Amplitude Phases
ay=6.95 ©,=0.0294
a,=13.42 ®,=-0.4076
a=4.22 P,=1.8052
a;=5.13 ©,=2.6778
a,=3.59 ©,=-1.1430
as=8.30 ©,=-0.0524
ag=0.26 D=0.4296
a,=4.61 ©,=-0.3131
a.=3.93 D,=-0.1972
a=8.53 ®,=-0.3131

Figure 3 contrasts the viscid and inviscid versions
of these solutions at day 3, showing coastal sea lev-
el in the left panel and upper-layer thickness
(AH =h —~H =d p/p,,) along the wind axis in the
right panel. Because the phase angles in (21a) are
not zero (see Table 2), the minimum coastal sea lev-
el occurs neither at day 3 nor at the wind axis; in-
stead, the minimum value of -17.0 cm actually oc-
curs at 3.14 days (a 3.4 hour lag) and at x=3 km.
This sea-level drop is 16% larger than that(-14.6 cm
at x=0 and t=3 days) of the corresponding inviscid
solution. Thus, horizontal mixing acts to shift the lo-
cation and time of minimum sea level slightly, but
to increase the sea-level'drop much larger.

It is surprising that the sea-level drop is increased
by horizontal mixing. A possible reason for this in-
crease is that the volume of water displaced offshore
by the forcing is greater with mixing than without it.
To test this idea we determined the average offshore
transport per wavelength, V, driven by the forcing as
it increased from zero(at t=n/c=3 days) to its max-
imum strength (at £ =27/c =6 days). It is sufficient to
evaluate this transport far offshore where the offshore
velocity is just ©' and the result is

(3

_ H 2, rm , P
V= p};jmdx jm v = (22)

o A0’

which is the same both with and without mixing.
The other possibility for the increased sea-level
drop is that mixing changes the structure of the coa-
stal boundary layer, and this is indeed the case. The
plots in the right panel of Figure 3 show that the
boundary layer with mixing is actually narrower

than that without mixing. Thus, to provide a volume
of water equal to the amount that is displaced
offshore, the interface in the narrower boundary lay-
er must rise further (and hence the sea-level drop
must increase).

b. Numerical solutions:

For the linear model to the Tehuantepec forcing
when f is costant, coastal sea level has dropped
-18.7 cm, at day 3 which is 33% more than the drop
of -14.1 cm associated with the inviscid analytic solu-
tion, due to horizontal mixing in the numerical model.

For the papagayo forcing, the variable f solution
shows that the speed of the gyre is only 3.8 km/day,
considerably smaller than the nondispersive Rossby
wave speed at 12°N of 5.3 km/day. For Tehuan-
tepec solution when f is variable, the sea level drops
-25.0 cm at the coast after 3 days, considerably larg-
er than the value of -18.7 cm for the linear model.

To determime the causes of the increase in the
sea-level drop from -18.7 cm to -25.0 cm, we car-
ried out a series of test calculations in which various
terms were sequentially neglected or linearized in
the momentum and continuity equations in (8a).
When the forcing term was then linearized the drop
decreased markedly to -12.0 cm and for the com-
pletely linearized model it was -18.5 cm, in good
agreement with the solution to the linear model.
Clearly, the most important term causing the in-
crease is the forcing T/h, where the shallowing of h
at the coast during upwelling.

For the Ppagayo forcing, the westward speed of the
gyre is 6.3 km/day, much faster than that of the linear
solution not shown here. The increased propagation
speed probably has two nonlinear cause: the momen-
tum-advection term, and the nonlinear terms with the
larger layer thikness at the center of the gyre.

In all the previous solutions, the propagation spe-
eds of anticyclonic gyres are considerably less than
those of observed ones. A possible reason for this
discrepancy is that the background stratification is
not well represented,and therefore that the speeds of
free waves are underestimated. To explore the sen-
sitivity of solutions to the background stratification,
we carried out several runs that were the same as
the Tehuantepec and Papagayo solutions in Figures



The Analytic and Numerical Solutions to the Strong Offshore Winds

3 days SL 6 days . i .m-“
T T elelmmmme et
-’.o = oy, ". e’
L J . “» i-ny 1, o s
/“l + Ta e
PRy f, 17" t\ “ e
- ! L' h
et t\i - {) }lv .
ot - M Pas i
- 1 . 0 8 u/ /‘ .
.8 '\\‘— ¢ . e
s D . -
Y O ™ . « 4 &
>, .n‘}x‘ « ¢ P g
.. L (A ‘."“‘.‘ . . -
e et e gV & "
r e e ¢« a b v e
v o s o ¢ s v P
3 . L. v v v - “
o
&
Bde2.5 cu 200 ce/x
140 : 5. I - o i 1 N P 3 L e, L
20 daye ug-v4 Ug-vy
16° - S s g T Y
. oo-’-——‘-—a-o . 4‘ O > s artsitppsprgs > B L
- e - - -
- y . ——_...‘\‘ R ‘9' ﬁ—%—.‘q\o- " "
.‘.‘} —N\‘ " .‘V'P’D e e '~'.‘q <
l"’, \ ¢ 'D.l- /f-\\ & v "' ‘.
* s +
e RN A NI
Lot t . Yode 2 . 1 2 .
F. t ‘ \‘ /‘ i‘ a & o " » ¢ 4 A
.t - v . & + 4
LA I & {h, }JJ, Calels
.\ ‘\.:/ 4 P e / 11‘ el
NS » 4
,x-\:.s,_,:// SIS WL e
'1“ c-....:—;, “ M 'v-ﬂ. - /4 “. -
! ceEE —"'-‘-'E | //‘/‘4 el X
.. ‘ e . g] Rabscatal JdE ol ._.:.‘._ g
50 cm/x « v @ < 50 cass
110 —_ L it : M Tr RP X i
200 x 1000 km x 1000 xm
20 days ug-ve 40 days Ui-vy
1% 0 Y Y o v T T u— T
v s e
v e s e J | A 4
v - . s a v v s e e .
v e e e s a4 T e e e e esaa
v LA AR S SN ] LI A A A e I
LRl o SC RN 4 D T e
-« w A —. - o L R ol S J
‘q’ﬂ /;_\‘ )‘. . -4 -‘.‘-’p// ———y % *
« ®
't \ T “ly e Yol
t r ~ 4,0, ‘a0t ’ o e
(Y LY PRY . hnd Y L
L T x/ }1:, . . N Ea el J
gy s > - - +
v NS NS
Te® ‘\_// P P "t N £°
PR N e ‘1.~ P . Py {.-. J
- - N T o a NN "c L
- - oy & - - N ‘,‘,, -
L A A . et s
PP LR LR N
3 v v - b .« o . he
v - A
s i b |
o 1 o
& &
200 ca/s 200 cu/s
ge " I L — 2 - % : — %
400 1200 ke 400 1200 km

X

X

83

Fig. 4. The response of the nonlinear 1% -layer model with T, = 0°C, showing sea level at day 3 and currents at day 6,
20 and 40 days to the Tehuantepec forcing (upper and middle panels), and currents at day 20 and 40 days to
the Papagayo forcing (lower panels) for variable f The coastal sea-level drop was -23.0 cm which is less than
-25.0 em in Figure 11 in Lee(1990). The size of the Tehuantepec gyre is gradually growing due to larger mix-
ing, and it propagates westward at a speed of 5.3 kim/day. The Papagayo gyre does not grow rapidly with
v, = 2% 10° cm?s at day 6, and its westward propagation speed is 10.3 km/day.

5-7 in McCreary et al (1989), except with T,=0"C
rather than 12°C. With this choice, the characteristic
speed of the system, ¢ =[{ge/p)T,~T)H]*, in-

creases to 206.5 cm/s, and so the Rossby radius and
the non — dispersive Rossby wave speed are larger
by factors of (29/17)% =131, and 29/17 = 1.71.



84 Hyong Sun Lee

respectively.

Generally, solutions for the two values of T, are
quite similar in structure. The upper two panels in
Figure 4 show the initial response of the Tehuan-
tepec solution, and they are comparable to two of
the panels in their Figure 11 in McCreary et al
(1989). The coastal sea-level drop‘at day 3 is ac-
tually less in Figure 4, being -23.0 cm rather than
-25.0 cm. This property is somewhat surprising be-
cause the analytic solutions indicate that the drop in-
creases with the parameter c; it happens because, ac-
cording to (9), coastal sca level in the nonlinear
model is influenced by the decrease in T as well as
in h, and in this solution T drops only to 20.6°C (as
compared to 14.4°C when T, = 12°C). The middle
and lower panels illustrate that the gyres propagate
westward at speeds of 5.3 km/day and 10.3 km/day
for the Tehuantepec and Papagayo solutions, respec-
tively, faster because of the larger Rossby wave spe-
ed. These propagation speeds are in better agree-
ment with the observations but still too small.

Solutions to the 2} -layer Model
a. Analytic solutions:

i. Uniform meridional wind, semi-infinite basin:

To investigate how the existence of a second baroc- -

linic mode affects the coastal sea-level drop, here
we - obtain analytic solutions to equations (1)
without mixing on the f-plane forced by a spatially
uniform, switched-on wind in a semi-infinite basin.
Making the same assumptions that led to solution
(19), the solution for the pressure field associated
with each mode is given by

~ Ty gy

Dn = 1, e™I(t) (23)
Then, according to (7), the maximum coastal sea-
level drop at day 3 is

1% + T
JgH, ngz'

d=pg+p, /&= (24)

For the parameters in Table 1, equation (24) shows
that d= -(8.5 +10.7) cm = -19.2 cm, which is 19%

larger than the value of-16.1 cm from solution (19)
for the 1% -layer model. So, coastal sea level is sig-
nificantly affected by the presence of a second
baroclinic mode in the inviscid, 2% -layer model.

ii. Wind periodic in x and t, semi-infinite basin,
horizontal mixing: Here, we find analytic solutions
to equations (1a) when there is mixing. The solution
for each baroclinic mode is just (23) with ¢ and H re-
placed with ¢, and %, respectively. Then, the max-
imum, coastal sea — level drop along the wind axis
(at x=0 and y=0) at day 3 is d =d; +d, =-17.8
cm, which is slightly larger than -16.8 cm of the
1 -layer model.

~ Therefore, the addition of a second baroclinic mode

enhances the coastal sea-lavel drop when there is
mixing, but only by 6%.

b. Numerical solutions:

i. Solutions in the Gulf of Tehuantepec: During
the first 6 days the response of the no-nlinear 2J5 -
layer model very similar to that of the nonlinear 17 -
layer model. In addition, the sea-lavel drop at the
coast increases to -26.2 cm, a 5% increase over the
value of -25.0 cm for the nonlinear 1 -layer model.
Figure 5 shows the Tehuantepec solution at 20 and
40 days for variable f, showing sea level, upper-and
lower-layer currents, and temperature. SST patterns
at 20 and 40 days are very similar to those in the
nonlinear 1% -layer model, a relatively strong cy-
clonic gyre (speeds of the order of 14 cm/s at 20
days and 10 cm/s at 40 days) develops at the
northeastern side of the anticyclonic one. The flow
field in the second layer is also strong with the max-
imum speeds of about 18 cm/s at 20 days and 13
cm/s after 40 days. These upper and lower-layer
flow fields both have a southward current that ad-
vects the anticyclonic gyre southward, and so the
gyre locates at about 12.3°N after 40 days, much
farther south than in the 1) -layer case. In one test
run with v, = 2 10° cm/s after 6 days.

ii. Solutions in the Gulf of Papagayo: Figure 6
shows “the response of the nonlinear 2% -layer



10°

10°

to the Strong Offshore Winds 85

The Analytic and Numerical Solutions

20 aays

AT-0.2%° C
1000 xm

Ar-o.g' c

1000 km O
X

Fig. 5. The response of the nonlinear, 2% -layer model to the Tehuantepec forcing for variable f at 20 and 40 days,

showing sea level, upper-layer and lower-layer currents,and temperature. The anticyclonic gyre propagates west-
ward with a speed of about 6.0 km/day and also drifts southward due to self-advection and to advection by the
lower-layer flow fields, and locates at 12.3 N after 40 days. A relatively strong upper-layer cyclonic circulation

and by the southward lower-layer currents (18 cm/s at day 20 and 13 cm/s at 40).
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Fig. 6. The response of the nonlinear 2 -layer model to
the Papagayo forcing for variable f at 20 and 40
days. A relatively strong upper-layer cyclonic
gyre (speeds of the order of 10 cm/s at 40 days)
develops at the eastern flank of the anticyclonic
gyre. Similarly, a southward lower layer currents
(speed of the order of 30 cr/s at 20 days and 20
cm/s at 40 days) also pushes the anticyclonic
gyre south-westward. The center of the gyre is
at about 10.8 N at 40 days, and its propagation
speed is about 12.8 km/day.

model to the Papagayo forcing at 20 and 40 days.
At 20 days the response is almost same as that of
the nonlinear 1% -layer model. By day 40. however,
‘the location of the gyre is shifted southward more
than 1 degree farther. Its propagation speed in-

creases with time from about 12 km/day to about 13
km/day, probably because f decreases as the gyre
moves southward. Southward movement of the an-
ticyclonic gyre in this case is due to the relatively
strong second-layer flow field (20 cm/s) and to ad-
vection by the weak upper-layer cyclonic gyre. The
average propagation speed from day 20 to 40 is a-
bout 12.8 km/day, which is very close to the ob-
served speed of about 13 km/day. The increased
westward propagation speed is largely due to ad-
vection by wind-forced background currents and
partly due to the increased non-dispersive Rossby
wave speed at lower latitudes.

To investigate how strongly the second — layer cir-
culation affects the propagation speed of the gyre,
we repeated the solution of Figure 6 with H, equal-
ing 150 m and 450 m. With H, =150 m, the result-
ing propagation speed of the gyre was about 14.5
km/day, and the strongest second-layer current spe-
ed was of the order of about 30 cm/s at day 40.
With H,=450 m, the resulting speed reduced to
10.5 km/day (similar to the 1 -layer solution in the
lower panels of Fig. 4) and the maximum speed of
the second-layer current reduced to about 15 cm/s at
day 40. Thus, the propagation speed appears to be
directly related to the strength of the lower layer cur-
rents.

To investigate the influence of B and the effect of
the second-layer flow field, we obtained and com-
pared solutions to the nonlinear, 1% -layer and 2)% -
layer model with f constant. The nonlinear 1 -lay-
er anticyclone did not propagate westward at all. In
this case, the anticyclone propagates westward with
a speed of about 3.6 km/day, and this motion can
only be due to the influence of the lower-layer cir-
culation. Note that there are two nearly symmetric
counter-rotating gyres in ths second layer with a
maximum speed of about 30 cm/s. It is clearly west-
ward advection induced by this dipole circulation
pattern that accounts for the fast westward pro-
pagation speed of the upper-layer anticyclone. This
result further supports the idea that the wind-forced
Papagayo anticyclonic gyre propagates westward
faster due to westward advection associated with
background currents in the lower-layer.
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SUMMARY AND DISCUSSION

This study investigates the coastal-ocean res-
ponse to forcing by wind stress fields similar in
structure to the narrow mountain-pass jets that oc-
cur in the Gulfs of Tehuantepec and Papagayo (Fig.
1). In response to this forcing, water moves rapidly
offshore as the wind strengthens, and sea-level
drops as much as 30 cm. The generation of an an-
ticyclonic gyre that subsequently propagates west-
ward and southward at a speeds considerably faster
than that of a linear Rossby wave.

The model oceans used to study the dynamics of
these phenomena are linear and non-linear versions
of a 1%-layer model and a 2% -layer model, and
most solutions are forced by idealized versions of
the offshore jets (Fig. 2). The nonlinear models in-
clude an equation for the upper-layer temperature
field with entrainment. Solutions are obtained both
analytically and numerically. Solutions to the more
sophisticated models compare remarkably well with
the observations.

Analytic solutions to the linear 1% -layer model
are found with f constant both with and without hor-
izontal mixing. The solution with the northern boun-
dary to the ocean [solution (19)]. In this case, there is
a sea-level response at the coast that is directly pro-
portional to the wind stress. The second is forced by
a spatially confined wind field like the mountain-
pass jets [solutions (20)]. It develops two symmetric
gyres offshore due to Ekman pumping, has strong
coastal currents that converge on the wind axis, and
does not generate any coastal Kelvin waves. A third
solution with horizontal mixing is found in a semi-
infinite basin and forced by a wind tha;lt is uniform in
y and periodic in x and I [solution (21)]. In this case,
when v, =2 X 107 cm,,, the coastal sea-level drop is
enhanced to -16.8 cm and its phase is also shifted
slightly in x and t, shifts do not occur in the inviscid
analytic solutions. The reason for the increased sea-
level drop is that the coastal boundary layer is ac-
tually narrower with horizontal mixing (right panel
of Fig. 3), and so the interface must rise close to the
surface in order to provide enough water for the
volume that is moved offshore by the wind.

Numerical solutions to the linear 1% -layer model
with f constant corroborate these an-alytic results, and
demonstrate that horizontal mixing strengthens the
coastal sea level response. Factors that increase the
coastal sea-level drop during an upwelling event are:
the offshore advection of thin h, and most importantly
enhanced forcing t/h in coastal regions where h is
small. As for the linear model, horizontal mixing also
strengthens the coastal sea level response by more
than 30%. When f is variable, the gyres propagate
westward with a speed less than that of nondispersive
Rossby waves. The model Tehuantepec and Pa-
pagayo gyres propagate westward at speeds of 3.7
km/day and 6.3 km/day, faster than the speeds of
linear Rossby waves, due partly to the increase of h at -
the center of the gyre and partly to self-advection.
When T, the temperature of the deep ocean, is de-
creased from 12°C to 0°C, the speeds increase to 5.3
km/day and 10.3 km/day, respectively,largely due to
the increase in the non-dispersive Rossby wave speed.
existence of a second baroclinic mode increases the
coastal sea-level drop. Solution (24) is forced by a
spatially uniform, switched-on wind in a semi-infinite
basin and has no horizontal mixing. The coastal sea-
level drop in this case is -19.2 cm, 20% larger than
the value of -16.1 cm for the corresponding solution
(19) to the 1} -Jayer model. With horizontal mixing
the solution forced by the same periodic wind as solu-
tion (24) has a maximum drop of -17.8 cm, an in-
crease of 6% over the value of -16.8 cm for the 1% -
layer model. Numerical solutions to the 2% -layer
model also exhibit a most increased coastal sea-level
drop, in one case a 5% increase from -25.0 cm for the
nonlinear 1% -layer model to -26.2 cm for the 2% -lay-
er model. In the Tehuantepec solution, the an-
ticyclonic gyre moves southward due primarily to the
strong lower-layer flow field. In the Papagayo solu-
tion, the lower-layer flow field advects the Papagayo
gyre westward, increasing its westward propagation
speed to 12.8 km/day (Fig. 6), Close to observed
values. A solution with constant f corroborates how
strongly the lower-layer currents modify the west-
ward propagation speed; in the 1% -layer solution the
gyre does not propagate westward at all, whereas in
the 2% -layer solution it does at 3.6 km/day (not



88 Hyong Sun Lee

shown here).

The propagation speeds of anticyclones are
enhanced by advection in either of two ways: self-
-advection by B-induced distortions of the gyres
themselves, and advection by background currents
generated by the wind. To investigate the relative
importance of these two processes, we found sev-
eral solutions in which isolated eddies of ap-
proximately Gaussian shape were initially imposed
on the models, and thereafter were left to develop
freely. The 1 -layer solutions has a westward pro-
pagation speed of 6.6 km/day, very close to that for
the corresponding wind-forced gyre. In contrast, the
isolated anticyclone in the 2% -layer model pro-
pagates at a considerably slower speed than the
wind-forced one does, indicating the importance of
the wind-forced background circulation in the latter
solution (not shown here).

In conclusion, the solutions presented here vary
in complexity from a simple linear so-lution forced
by a uniform wind in abounded ocean to com-
plicated nonlinear solutions to a thermodynamic,
2% -layer model that are forced by jet-like offshore
directed winds. The resulting hierarchy of solutions
reveals the important physics in an organized way.

Moreover, the solutions, particularly those of the
nonlinear 2% -layer model, compare remarkably
well with the available observations, suggesting that
they contain much of the important dynamics of the
various phenomena. A logical next step in this area
of research is to carty out calculations for a longer
period with more realistic data.
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