Browse > Article
http://dx.doi.org/10.12941/jksiam.2011.15.2.097

THE INFLUENCE OF DRIVING FUNCTION ON FLOW DRIVEN BY PUMPING WITHOUT VALVES  

Jung, Eun-Ok (DEPARTMENT OF MATHEMATICS, KONKUK UNIVERSITY)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.15, no.2, 2011 , pp. 97-122 More about this Journal
Abstract
Fluid dynamics driven by pumping without valves (valveless pumping) shows interesting physics. Especially, the driving function to generate valveless pump mechanism is one of important factors. We consider a closed system of valveless pump which consists of flexible tube part and stiffer part. Fluid and structure (elastic tube) interaction motions are generated by the periodic compress-and-release actions on an asymmetric location of the elastic loop of tubing. In this work, we demonstrate how important the driving forcing function affects a net flow in the valveless circulatory system and investigate which parameter set of the system gives a more efficient net flow around the loop.
Keywords
Valveless pumping; Immersed boundary method; Forcing function; Directional flow;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. S. PESKIN, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977), pp. 220-252.   DOI   ScienceOn
2 G. LIEBAU, Uber ein Ventilloses Pumpprinzip, Naturwissenschsften, 41 (1954), pp. 327-328.
3 D. M. MCQUEEN, C. S. PESKIN, AND E. L. YELLIN, Fluid dynamics of the mitral valve: physiological aspects of a mathematical model, Am. J. of physiol., 242 (1982), pp. H1095-H1110.
4 D. M. MCQUEEN AND C. S. PESKIN, Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart, Journal of Supercomputing, 11 (3) (1997), pp. 213-236.   DOI   ScienceOn
5 S. MIYAZAKI, T. KAWAI, AND M. ARARAGI, A piezo-electric pump driven by a flexural progressive wave, IEEE Transactions, pp. 283-288, 1991.
6 M. C. LAI AND C. S. PESKIN, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, 160 (2) (2000), pp. 705-719.   DOI   ScienceOn
7 R. J. LEVEQUE AND Z. LI, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31 (1994), pp.1019-1044.   DOI   ScienceOn
8 G. LIEBAU, Die Bedeutung der Tragheitskrafte fur die Dynamik des Blutkreislaufs, Zs Kreislaufforschung, 46 (1957), pp. 428-438.
9 G. LIEBAU, Die Stromungsprinzipien des Herzens, Zs Kreislaufforschung, 44 (1955), pp. 677-684.
10 G. LIEBAU, Aus welchem bleibt die Blutforderung durch das Herz bei valvularem Versagen erhalten?, Z. f. Kreislaufforschg., 45 (1956), pp. 481-488.
11 L. J. FAUCI, Peristaltic pumping of solid particles, Computers and Fluids, 21 (1992), pp. 583-598.   DOI   ScienceOn
12 L J. FAUCI AND A. L. FOGELSON, Truncated Newton methods and the modeling of complex immersed elastic structures, Communications on Pure and Applied Mathematics, 46 (1993), pp. 787-818.   DOI
13 L J. FAUCI AND A. MCDONALD, Sperm motility in the presence of boundaries, Bulletin of Mathematical Biology, 57 (5) (1995), pp. 679-699.   DOI
14 A. L. FOGELSON, A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting, J. Comput. Phys., 56 (1984), pp. 111-134.   DOI
15 W. HARVEY, Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus, Frankford, (1987), Caput 14.
16 A. L. FOGELSON AND C. S. PESKIN, A fast numerical method for solving the three-dimensional Stoke's equations in the presence of suspended particles, J. Comput. Phys., 79 (1988), pp. 50-69.   DOI
17 J. GUNTZIG, S. NOLTE, P. SCHAD, AND R. PFANKUCHEN, Die Lymphdrainage von Cornea, Limbus und Conjunctiva Klin, MbL Augenheilkunde, 190 (1987), pp. 491-495.   DOI
18 H. R. HALPERIN, J. E. TSITLIK, R. BEYAR, N. CHANDRA, AND A. D. GUERCI, Intrathoracic pressure fluctuations move blood during CPR: comparison of hemodynamic data with predictions from a mathematical model, Ann. Biomed. Eng., 15 (1987), pp. 385-403.   DOI   ScienceOn
19 E. JUNG, 2-D simulations of valvelelss pumping using the Immersed Boundary Method, Ph.D. Thesis, Courant Institute of Mathematical Sciences in New York University, 1999.
20 E. JUNG AND C. S. PESKIN, Two-Dimensional Simulations of Valvelelss Pumping Using the Immersed Boundary Method, SIAM J. Sci. Comput., 23, 1 (2001), pp. 19-45.   DOI   ScienceOn
21 P. J. KILNER, Formed flow, fluid oscillation and the heart as a morphodynamic pump (abstract), European surgical research, 19, suppl 1 (1987), pp. 89-90.
22 D. C. BOTTINO, Modeling Viscoelastic Networks and Cell Deformation in the Context of the Immersed Boundary Method, J. Comput. Phys., 147 (1998), pp. 86-113.   DOI   ScienceOn
23 K. M. ARTHURS, L. C. MOORE, C. S. PESKIN, AND ET AL., MODELING ARTERIOLAR FLOW AND MASS TRANSPORT USING THE IMMERSED BOUNDARY METHOD, J. Comput. Phys., 147 (1998), pp. 402-440.   DOI   ScienceOn
24 C. BEATTIE, A. D. GUERCI, T. HALL, A. M. BORKON, W. BAUMGARTNER, R. S. STUART, J. PETERS, H. HALPERIN, AND J. L. ROBOTHAM, Mechanisms of blood flow during pneumatic vest cardiopulmonary resuscitation, J. Appl. Physiol., 70 (1991), pp. 454-465.   DOI
25 R. P. BEYER, A computational model of the cochlea using the immersed boundary method, J. Comput. Phys., 98 (1992), pp. 145-162.   DOI
26 R. CORTEZ AND M. MINION, The Blob Projection Method for Immersed Boundary Problems, J. Comput. Phys., 161 (2000), pp. 428-453.   DOI   ScienceOn
27 J. M. CRILEY, J. T. NIEMANN, J. P. ROSBOROUGH, S. UNG, AND J. SUZUKI, The heart is a conduit in CPR, Crit. Care Med., 9 (1981), pp. 373.   DOI   ScienceOn
28 R. DILLON, L. J. FAUCI, AND D. GAVER III, A microscale model of bacterial swimming, chemotaxis and substrate transport, Journal of Theoretical Biology, 177 (1995), pp. 325-340.   DOI   ScienceOn
29 R. DILLON, L. J. FAUCI, A. L. FOGELSON, AND D. GAVER III, Modeling biofilm processes using the immersed boundary method, J. Comput. Phys., 129 (1) (1996), pp. 57-73.   DOI   ScienceOn
30 L. J. FAUCI AND C. S. PESKIN, A computational model of aquatic animal locomotion, J. Comput. Phys., 77 (1988), pp. 85-108.   DOI
31 M. E. ROSAR, A three dimensional model for fluid flow through a collapsible tube, PhD thesis, New York University, 1994.
32 J. A. WERNER, M.D., H. L. GREENE, M.D., C. L. JANKO, AND L. A. COBB, M.D., Visualization of cardiac valve motion in man during external chest compression using two-dimensional echocardiography.: implications regarding the mechanism of blood flow, Circulation, 63 (1981), pp. 1417-1421.   DOI   ScienceOn
33 C. S. PESKIN ET AL., Three dimensional fluid dynamics in a two-dimensional amount of central memory. Wave Motion: Theory, Modeling and Computation, 1 (1987), pp. 85-146.
34 C. S. PESKIN AND D. M. MCQUEEN, A three-dimensional computational method for blood flow in the heart: Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys., 81 (1989), pp. 372-405.   DOI
35 C. S. PESKIN AND D. M. MCQUEEN, A general method for the computer simulation of biological systems interacting with fluids, Symposia of the Society for Experimental Biology, 49 (1995), pp. 265-276.
36 C. S. PESKIN AND D. M. MCQUEEN, Fluid dynamics of the heart and its valves, Case studies in mathematical modeling - Ecology, Physiology, and Cell Biology, pp. 309-337, 1996.
37 C. S. PESKIN AND B. F. PRINTZ, Improved volume conservation in the computation of flows with immersed elastic boundaries, J. Comput. Phys., 105 (1993), pp. 33-46.   DOI   ScienceOn
38 A. M. ROMA, C. S. PESKIN, AND M. J. BERGER, An adaptive version of the Immersed Boundary Method, J. Comput. Phys., 153 (1999), pp. 509-534.   DOI   ScienceOn
39 D. J. RANDALL AND P. S. DAVIE, The Hearts and Heart-like Organs, Academic Press, London, 1 (1980), pp. 51-53.
40 H. THOMANN, A Simple Pumping Mechanism in a Valveless Tube, Journal of Applied Math. and Phys., 29 (1978), pp. 169-177.   DOI   ScienceOn
41 K. L. MOORE, Embryologie, Schattauer Stuttgart, 2nd ed (1985), pp. 340-358.
42 M. MOSER, J. W.HUANG, G. S. SCHWARZ, T. KENNER, AND A. NOORDERGRAAF, Impedance defined flow, generalisation of William Harvey's concept of the circulation - 370 years later, International Journal of Cardiovascular Medicine and Science, Vol 1, Nos 3/4 (1998), pp. 205-211.
43 C. S. PESKIN, Flow patterns around heart valves: A digital computer method for solving the equations of motion, Ph.D. Thesis, Albert Einstein College of Medicine, 1972.