• Title/Summary/Keyword: force measurement

Search Result 1,628, Processing Time 0.022 seconds

A Study on Tribological Properties of Diamond-like Carbon Thin Film for the Application to Solid Lubricant of MEMS Devices (MEMS 소자의 고체윤활박막으로 활용하기 위한 다이아몬드상 카본 박막의 트라이볼로지 특성 분석)

  • Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1010-1013
    • /
    • 2006
  • Hydrogenated Diamond-like carbon (DLC) films were Prepared by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas for the application to solid lubricant of MEMS devices. We have checked the influence of varying RF power on tribological properties of DLC film. We have checked their performance as two kinds of method such as FFM (Friction Force Microscope) and BOD (Ball-on Disk) measurement. The friction coefficients and the contact number of cycles to steady state decreased as the increase of RF power with FFM and BOD measurement, respectively.

Development of a Single-Joint Optical Torque Sensor with One Body Structure (일체형 구조를 갖는 1축 광학 토크 센서 개발)

  • Gu, Gwang-Min;Chang, Pyung-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.218-222
    • /
    • 2011
  • This paper proposes a single-joint optical torque sensor with one body structure. Conventional optical torque sensors consist of three parts, two plates and an elastic structure. They have slightly slipping problem between plates and elastic structure due to the manufacturing tolerance. Since the order of measurement range of optical sensor is about ten micrometers, the slipping problem causes large measurement error, especially in the case of vibrational or high speed plant. This problem does not occur in the proposed design due to the one body structure. The proposed sensor has advantage of low cost, light weight, and small size. And it is easy to design and manufacture. Simulation works that analysis of stress and strain are performed accurately. To demonstrate the performance of proposed sensor, experiments were implemented to compare with a commercial force/torque sensor (ATI Mini45).

Design on a new oil well test shock absorber under impact load

  • Wang, Yuanxun;Zhang, Peng;Cui, Zhijian;Chen, Chuanyao
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.335-352
    • /
    • 2008
  • Continuous operation of test and measurement is a new operating technique in the petroleum exploitation, which combines perforation with test and measurement effectively. In order to measure the original pressure of stratum layer exactly and prevent testing instrument from being impaired or damaged, a suitable shock absorber is urgently necessary to research. Based on the attempt on the FEM analysis and experiment research, a new shock absorber is designed and discussed in this paper. 3D finite element model is established and simulated accurately by LS-DYNA, the effect and the dynamic character of the shock absorber impact by half sinusoidal pulse force under the main lobe frequency are discussed both on theoretics and experiment. It is shown that the new designed shock absorber system has good capability of shock absorption for the impact load.

Evaluation of running safety for korean high speed railway vehicle (한국형 고속철도차량의 주행안전성 평가)

  • Ham Young-Sam;Hur Hyun-Moo
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.316-321
    • /
    • 2003
  • The railroad is a means of large transportation which has many talents such as a safety and a regularity. That is a results from various confidential performance tests and evaluations of the system. The railroad system consist of various subsystems - vehicle, power supply, signal, communications, track structures, operations, etc. Among them, as an item of safety evaluation there is a measurement of wheel/rail force, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more important in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, it is introduced to preprocess the wheelset for measuring wheel/rail force of high speed rail, such as to treat a measuring wheelset, adhesion of strain gauges and static load test, running test result of main line.

  • PDF

A Study on Determination of the Area Function of Nano Indenter Tip with AFM (AFM을 이용한 나노 인덴터 팁의 면적함수 결정에 관한 연구)

  • 박성조;이현우;한승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.145-152
    • /
    • 2004
  • Depth-sensing indentation is wifely used for evaluation of mechanical properties of thin films. It is generally accepted that the most significant source of uncertainty in nanoindentation measurement is the geometry of the indenter tip. Therefore the successful application of the technique requires accurate calibration of the indenter tip geometry. The direct measurement of geometry of a Berkovich indenter was determined using a atomic force microscope. The indentation geometrical calibration of contact area was performed by analyzing the indenter tip profile. The equations of area functions were proposed for nanoscale thin films..

Research on the Effect of Cutter Wear on the Torsional Vibration of Spindle in Milling (밀링가공에서 공구마모와 스핀들의 비틀림 진동과의 상관관계에 관한 연구)

  • Kim, Seog-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.62-67
    • /
    • 1999
  • In milling, cutting tool ins directly attached to spindle and this tells that spindle can provide very useful information on the cutting tool condition such as wear or breakage. Since spindle is rotating at a high speed, measuring spindle velocity using a noncontacting measurement system gives the best information which can be obtained. Due to the force applied to spindle through cutting tool, velocity of spindle changes. And any change in cutting tool condition affects cutting force and consequently spindle vibration. With the intent of continuously monitoring cutting tool condition in intermittent machining operations in a benign manner, a noncontacting velocity measurement system using a laser Doppler velocimeter was assembled to measure spindle torsional vibration. Spindle vibration was measured and analysis of it in the frequency domain yielded a measure which corresponded to amount of cutting tool wear in milling.

  • PDF

A Study on the Distribution of Friction Heat generated by CMP Process (CMP 공정에서 발생하는 연마온도 분포에 관한 연구)

  • 김형재;권대희;정해도;이용숙;신영재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.42-49
    • /
    • 2003
  • In this paper, we provide the results of polishing temperature distribution by way of infrared ray measurement system as well as polishing resistance, which can be interpreted as tribological aspects of CMP, using force measurement system. The results include the trend of polishing temperature, its distribution profile and temperature change during polishing. The results indicate that temperature affects greatly to the removal rate. Polishing temperature increases gradually and reaches steady state temperature and the period of temperature change occurs first tens of seconds. Furthermore, the friction force also varies as the same pattern with polishing temperature from high friction to low. These results suggest that the first period of the whole polishing time greatly affects the nonuniformity of removal rate.

Dynamic deformation measurement in structural inspections by Augmented Reality technology

  • Jiaqi, Xu;Elijah, Wyckoff;John-Wesley, Hanson;Derek, Doyle;Fernando, Moreu
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.649-659
    • /
    • 2022
  • Structural Health Monitoring (SHM) researchers have identified Augmented Reality (AR) as a new technology that can assist inspections. Post-seismic structural inspections are conducted to evaluate the safety level of the damaged structures. Quantification of nearby structural changes over short-term and long-term periods can provide building inspectors with information to improve their safety. This paper proposes a Time Machine Measure (TMM) application based on an Augmented Reality (AR) Head-Mounted-Device (HMD) platform. The primary function of TMM is to restore the saved meshes of a past environment and overlay them onto the real environment so that inspectors can intuitively measure dynamic structural deformation and other environmental movements. The proposed TMM application was verified by demo experiments simulating a real inspection environment.

Design and Implementation of Occlusion Force Analysis Software for Malocclusion Diagnosis : A Pilot Study (부정교합 진단을 위한 교합력 분석 소프트웨어의 설계 및 구현 : A Pilot Study)

  • Park, Kyoung-Jong;Kim, Tae-Yun;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.1
    • /
    • pp.147-155
    • /
    • 2009
  • Occlusion force measuring and analysis is a diagnostic method of tooth dynamics through the related force analysis. In this paper, we design and implement a series of occlusion force measuring software and evaluate its utility as a base system for a new occlusion force measure and analysis system development. For the reason, we developed a group of tools to measure the normal and abnormal occlusion force. Firstly, we have visualized the occlusion force distribution with quantitative figures. The center of force (COF) variation was visualized the path of marker according to teeth dynamics and the distribution of occlusion forces in 14 tooth regions. Secondly, we have implemented a left and right tooth force balance measurement ratio tool to estimate a specific tooth region force. Furthermore, the measured occlusion force variation recorded in the software each 0.5 second. As the result of the physical examination by the accessed hardware of sensor sheet method, we confirmed the distribution and balance of forces effectively.

  • PDF

Experimental study on the method of estimating the vertical design wave force acting on a submerged dual horizontal plate

  • Kweon, Hyuck-Min;Oh, Sang-Ho;Choi, Young-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.569-579
    • /
    • 2013
  • A steel-type breakwater that uses a submerged dual horizontal porous plate was originally proposed by Kweon et al. (2005), and its hydrodynamic characteristics and design methodology were investigated in a series of subsequent researches. In particular, Kweon et al. (2011) proposed a method of estimating the vertical uplift force that acts on the horizontal plate, applicable to the design of the pile uplift drag force. However, the difference between the method proposed by Kweon et al. (2011), and the wave force measured at a different time without a phase difference, have not yet been clearly analyzed. In this study, such difference according to the method of estimating the wave force was analyzed, by measuring the wave pressure acting on a breakwater model. The hydraulic model test was conducted in a two-dimensional wave flume of 60.0 m length, 1.5 m height and 1.0 m width. The steepness range of the selected waves is 0.01~0.03, with regular and random signals. 20 pressure gauges were used for the measurement. The analysis results showed that the wave force estimate in the method of Kweon et al. (2011) was smaller than the wave force calculated from the maximum pressure at individual points, under a random wave action. Meanwhile, the method of Goda (1974) that was applied to the horizontal plate produced a smaller wave force, than the method of Kweon et al. (2011). The method of Kweon (2011) was already verified in the real sea test of Kweon et al. (2012), where the safety factor of the pile uplift force was found to be greater than 2.0. Based on these results, it was concluded that the method of estimating the wave force by Kweon et al. (2011) can be satisfactorily used for estimating the uplift force of a pile.