• Title/Summary/Keyword: foodborne bacteria

Search Result 208, Processing Time 0.028 seconds

Changes of Microbial Load on the Hands of Food Preparers (손의 미생물 오염도의 경시적 변화 - 조리종사자를 중심으로)

  • Kim, Jong-Gyu;Park, Jeong-Yeong;Kim, Joong-Soon
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.154-159
    • /
    • 2011
  • Inadequate food handling and poor hand hygiene playa major role in the occurrence of foodborne diseases. The objective of this study was to find out if the level of microbial contamination on the hands of food preparers varies by time during their working period. This study focused on the contamination of aerobic plate count, total and fecal coliforms, Escherichia coli, Staphylococcus aureus, and Salmonella spp. Sampling from left hand and right hand of twenty food preparers was done with glove-juice method at every two hours during their work. Microbiological testing was conducted according to the Food Code of Korea. The microbiological load on the hands was changed over time. Samples taken from their hands before work and at 8 hours showed higher levels of bacteria than those taken at 2, 4, and 6 hours during work and/or after work (p < 0.05). The contamination levels of microorganisms were consistently higher in right hand than in left hand. Poor hand hygiene practices were indicated by the positive results for total and fecal coli forms, E. coli, S. aureus, and Salmonella spp. on the hands of some food preparers. This study indicates food preparers' hands can be a vehicle of pathogen during their work. The results of this study emphasize the importance of hand hygiene education and training targeting the food preparers.

Microbial Quality of Fresh Vegetables and Fruits in Seoul, Korea (국내 신선 채소류의 미생물 오염 특성)

  • Hong, Chae-Kyu;Seo, Young-Ho;Choi, Chae-Man;Hwang, In-Suk;Kim, Moo-Sang
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.1
    • /
    • pp.24-29
    • /
    • 2012
  • A total of 187 samples of leafy vegetables and fruits were acquired at traditional markets and department stores in Seoul, Korea. Samples were tested for microorganism distributions and for the presence of pathogenic bacteria. The aerobic mesophilic counts ranged between 2.5 and 9.4 log CFU/g, with the highest count recorded from the dropwort. Counts of psychrotrophic microorganisms were as high as those of the mesophilic microorganisms. Total coliform populations between 1.0 and 7.8 log CFU/g were found in 90.9% of the samples. Microbiological counts for fruits were very low. $Escherichia$ $coli$ was isolated in 24 (12.8%) samples. $Staphylococcus$ $aureus$ and $Clostridium$ $perfringens$ contamination were found in 15 (8.0%) and 20 (10.7%) samples. $Salmonella$ species and $Listeria$ $monocytogenes$ were detected in 2.7 and 0.5% of samples, respectively. Among the total 187 samples, 8 samples were contaminated by more than two pathogens. $E.$ $coli$ O157:H7 was not detected in any of the samples. The microbial contamination levels determined in the present study may be used as the primary data to execute microbial risk assessment of fresh vegetables and fruits.

Investigation of Microbial Contamination Level during Production of Baby Leafy Vegetables (어린잎채소 생산 농장의 위생지표세균과 병원성미생물 오염도 조사)

  • Lee, Eun-Sun;Kwak, Min-Gyu;Kim, Won-Il;An, Hyun Mi;Lee, Hyo-Sup;Ryu, Song-Hee;Kim, Hwang-Yong;Ryu, Jae-Gee;Kim, Se-Ri
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.4
    • /
    • pp.264-271
    • /
    • 2016
  • The purpose of this study was to investigate contamination sources of baby leafy vegetables by assessing microbial loads on baby leafy vegetables and agricultural inputs contacted with the vegetables. To estimate microbial loads, fecal indicators (coliform and Escherichia coli) and foodborne pathogens (E. coli O157:H7, Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus) were examined. A total of 126 samples including eleven kinds of leafy vegetables, irrigation water, media, and tools were tested, resulting in coliform contamination observed from most of samples. For E. coli, 10.3% (13/126) of the samples were positive including irrigation water, knife, handler, media, tools, and three kinds of leafy vegetables. B. cereus was detected from 38% (48/126) of the samples including media, tools and three kinds of leafy vegetables. No E. coli O157:H7, Salmonella spp., and L. monocytogenes was detected. This result implies that contacting with agricultural inputs could explain microbial load of baby leafy vegetables.

Growth Inhibition Effects of Ethanol and Sodium Chloride on Bacillus cereus (Ethanol과 NaCl에 의한 Bacillus cereus 생육저해 영향)

  • Jang, Ji-Hyun;Jang, Jung-Soon;Lee, Sang-Yun;Kim, Hyun-Su;Kang, Sang-Mo;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.998-1002
    • /
    • 2003
  • Agricultural foodstuffs, usually consumed without sterilization, are frequently contaminated with foodborne pathogen B. cereus. Ethanol and sodium chloride were used to inhibit this pathogen for its effective control. Though five minutes of exposure to 20% ethanol did not inhibit the growth of B. cereus, inhibition was detected to 30% ethanol solution. As exposed longer, B. cereus was more effectively inhibited than E. coli and S. typhimurium. B. cereus, E. coli and S. typhimurium were not inhibited when exposed in a 10% sodium chloride solution for five minutes. However, these bacteria were inhibited with a combination of 10% sodium chloride and 20% ethanol solution for five minutes. Much synergistic growth inhibition on B. cereus was found at the treatment. Its viable count was reduced from $10^8cfu/ml$ to $10^2cfu/ml$ after five minutes and showed no count after ten minutes. This trend was also confirmed for the wild types of B. cereus. This method may be applied for the effective pre-treatment of many agricultural foodstuffs, especially uncooked foodstuffs, without the hazards that accompany special sanitizers and the nutritional loss from harsh sterilization.

Inhibition of Foodborne Pathogens and Spoilage Bacteria and Their Structural Changes by Ethanol Extract of Schizandra chinensis Baillon (오미자 에탄올 추출물에 의한 식품위해성 세균의 증식 억제 및 세포구조 변화)

  • Kim, Se-Ryoung;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.1
    • /
    • pp.109-119
    • /
    • 2012
  • This study analyzed the antibacterial activity of the ethanol extract of Schizandra chinensis Baillon against food pathogenic microorganisms to determine its capabilities as a natural antimicrobial agent. A paper disc diffusion test, minimum inhibitory concentration (MIC) determination, and time-kill assay showed that the ethanol extract strongly inhibits the growth of Listeria monocytogenes, Bacillus cereus, Escherichia coli O157:H7, and Pseudomonas aeruginosa. Release of cytoplasmic ${\beta}$-galactosidase was detected in E. coli, E. coli O157:H7, S. aureus, and P. aeruginosa treated with the ethanol extract. An increase of outer membrane permeability caused by the ethanol extract was also observed. An outward flow of cell constituents was detected in the Gram negative strains treated with the ethanol extract. These results imply that the inner and outer membranes of cells were partially destroyed and cell constituents were released by the treatment of the S. chinensis Baillon ethanol extract. The results of this study indicate that ethanol extract of S. chinensis Baillon evidences a fairly good antibacterial effect.

Antimicrobial Effect of the Submerged Culture of Sparassis crispa in Soybean Curd Whey (순물을 이용한 꽃송이 버섯 균사체 배양액의 항균활성 평가)

  • Lee, Eun Ji;Kim, Ji-Eun;Park, Min-Ju;Park, Dong-Cheol;Lee, Sam-Pin
    • Food Science and Preservation
    • /
    • v.20 no.1
    • /
    • pp.111-120
    • /
    • 2013
  • Sprassis crispa was cultivated using soybean curd whey, and its antimicrobial activities were examined against those of eight microorganisms that were foodborne pathogens or food-poisoning bacteria. The culture broth of soybean curd whey was superior in mycelium content (17.76 g/L) to that of the defined culture broth, and the ${\beta}$-glucan content was about 10.64 percent (w/w). The antimicrobial activities of the culture broth were confirmed against those of B. cereus, St. aureus, L. monocytogenes and S. typhimurium using the paper disk method. The antimicrobial activity was also maintained after the heat treatment and alcalase treatment. The filtrate with less than 3 kDa M.W. also showed the antimicrobial activity against four strains: B. cereus, St. aureus, L. monocytogenes and S. typhimurium. The minimum inhibitory concentration (MIC) was about 1.26 mg/mL in the B. cereus and 12.6 mg/mL in the St. aureus and L. monocytogenes. The S. typhimurium showed a MIC of 62.8 mg/mL. Thus, the culture of Sparassis crispa using soybean curd whey provides a thermally stable antimicrobial agent that can be used as a natural preservative in the biofood industry.

Assessment of Inactivation for Salmonella spp. on Chicken Meat using Confocal Laser Microscopy and Flow Cytometry (공초점 현미경 및 유세포 분류기를 이용한 계육에서의 Salmonella균 불활성화 평가)

  • Jang, Keum-Il;Chung, Duck-Hwa;Ha, Sang-Do;Kim, Keun-Sung;Lee, Kyu-Ho;Kim, Min-Gon;Kim, Cheorl-Ho;Kim, Kwang-Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.290-294
    • /
    • 2006
  • Inactivation rates of Salmonella enteritidis in vitro and in vivo were assessed using confocal microscopy and flow cytometry. S. enteritidis was inactivated with 1% (w/v) trisodium phosphate (TSP) and live cells, and inactive cells were distinguished by staining with fluorescent probe, LIVE/DEAD BacLight Bacteria Viability stain. After TSP treatment for 1 min, most of Salmonella cells changed from green (live cells) fluorescence to red (inactive cells) fluorescence, indication of effective sanitizing. Inactivation efficiency and contamination sites of S. enteritidis on chicken skin by TSP treatment were assessed using confocal laser microscopy. Precise flow cytometry histograms for viability changes of S. enteritidis. after TSP treatments were obtained. Efficiency of various sanitizer treatments on foodborne pathogens could be assessed using this method.

Human and Animal Disease Biomarkers and Biomonitoring of Deoxynivalenol and Related Fungal Metabolites as Cereal and Feed Contaminants (곡물 및 사료오염 데옥시니발레놀 및 대사체에 의한 인축질환 연계 생체지표 및 바이오모니터링)

  • Moon, Yuseok;Kim, Dongwook
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.2
    • /
    • pp.85-91
    • /
    • 2014
  • Deoxynivalenol (DON) and related trichothecene mycotoxins are extensively distributed in the cereal-based food and feed stuffs worldwide. Recent climate changes and global grain trade increased chance of exposure to more DON and related toxic metabolites in poorly managed production systems. Monitoring the biological and environmental exposures to the toxins are crucial in protecting human and animals from toxicities of the hazardous contaminants in food or feeds. Exposure biomarkers including urine DON itself are prone to shift to less harmful metabolites by intestinal microbiota and liver metabolic enzymes. De-epoxyfication of DON by gut microbes such as Eubacterium strain BBSH 797 and Eubacterium sp. DSM 11798 leads to more fecal secretion of DOM-1. By contrast, most of plant-derived DON-glucoside is also easily catabolized to free DON by gut microbes, which produces more burden to body. Phase 2 hepatic metabolism also contributes to the glucuronidation of DON, which can be useful urine biomarkers. However, chemical modification could be very typical depending on the anthropologic or genetic background, luminal bacteria, and hepatic metabolic enzyme susceptibility to the toxins in the diet. After toxin exposure, effect biomarkers are also important in estimating the linkage and mechanisms of foodborne diseases in human and animal population. Most prominent adverse effects are demonstrated in the DON-induced immunological and behavioral disorders. For instance, acutely elevated interleukin-8 from insulted gut exposed to dietaty DON is a dominant clinical biomarker in human and animals. Moreover, subchronic exposure to the toxins is associated with high levels of serum IgA, a biological mediator of IgA nephritis. In particular, anorexia monitoring using mouse models are recently developed to monitor the biological activities of DON-induced feed refusal. It is also mechanistically linked to alteration of serotoin and peptide YY, which are promising biomarkers of neurological disorders by the toxins. As animal-alternative biomonitoring, huamn enterocyte-based assay has been developed and more realistic gut mimetic models would be useful in monitoring the effect biomarkers in resposne to toxic contaminants in the future investigations.

Current Status and Prospects for Standards, Regulations, and Detection of Probiotic Yogurt: Review (프로바이오틱 요구르트의 기준, 규정, 검출에 관한 현황 및 전망: 총설)

  • Jung-Whan Chon;Kun-Ho Seo;Tae-Jin Kim;Hye-Young Youn;Seok-Hyeong Kang;Won-Uk Hwang;Hajeong Jeong;Dongkwan Jeong;Kwang-Young Song
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.9-25
    • /
    • 2023
  • Yogurt fermentation is known to be beneficial because it provides a low pH and harsh environment for foodborne pathogens and improves organoleptic properties. Additionally, organic acids produced through fermentation have a good effect on the viscosity and gelling properties of yogurt. Several potential health benefits of probiotic and generally recognized as safe strains have been suggested. Yogurt is the preferred vehicle for delivering probiotics to health-conscious consumers. Therefore, manufacturers of probiotic beverages must comply with the relevant regulations. The development of probiotic yogurt begins with the selection of strains with safety and functional properties of probiotics. The selected probiotic strain should be technically suitable for viability and improve organoleptic quality while maintaining the number of bacteria above the standard value during processing and storage conditions. In addition, the efficacy of probiotic strains contained in yogurt should be investigated, confirmed, and approved according to well-designed clinical trials. Although various methods are used to detect probiotic strains, the recently widely used next generation sequencing method can be actively utilized. In the future, more research should be conducted with the latest methods to identify probiotic functions and accurately detect probiotic strains.

Hazard Analysis for the Application of Good Agricultural Practices(GAP) on Paprika During Cultivation (파프리카의 농산물우수관리제도(GAP)적용을 위한 재배단계의 위해요소 분석)

  • Nam, Min-Ji;Chung, Do-Yeong;Shim, Won-Bo;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.273-282
    • /
    • 2011
  • This study established hazards which may cause risk to human at farm during cultivation stage of paprika. Samples of plants (paprika, leaf, stem), cultivation environments (water, soil), personal hygiene (hand, glove, clothes), work utensils (carpet, basket, box) and airborne bacteria were collected from three paprika farms (A, B, C) located in Western Gyeongnam, Korea. The collected samples were assessed for biological (sanitary indications and major foodborne pathogens), chemical (heavy metals, pesticide residues) and physical hazards. In biological hazards, total bacteria and coliform were detected at the levels of 1.9~6.6 and 0.0~4.610g CFU/g, leaf, mL, hand or 100 $cm^2$, while Escherichia coli was not detected in all samples. In major pathogens, only Bacillus cereus were detected at levels of ${\leq}$ 1.5 log CFU/g, mL, hand or 100 $cm^2$, while Staphylococuus aureus, Listeria monocytogenes, E. coli O157 and Salmonella spp. were not detected in all samples. Heavy metal and pesticide residue as chemical hazards were detected at levels below the regulation limit, physical hazard factors, such as insects, pieces of metal and glasses, were also found in paprika farms. Proper management is needed to prevent biological hazards due to cross-contamination while physical and chemical hazards were appropriate GAP criteria.