DOI QR코드

DOI QR Code

Human and Animal Disease Biomarkers and Biomonitoring of Deoxynivalenol and Related Fungal Metabolites as Cereal and Feed Contaminants

곡물 및 사료오염 데옥시니발레놀 및 대사체에 의한 인축질환 연계 생체지표 및 바이오모니터링

  • Moon, Yuseok (Department of Biomedical Sciences, Pusan National University School of Medicine) ;
  • Kim, Dongwook (National Institute of Animal Science, RDA)
  • 문유석 (부산대학교 의학전문대학원 의과학과) ;
  • 김동욱 (국립축산과학원)
  • Received : 2014.04.09
  • Accepted : 2014.05.27
  • Published : 2014.06.30

Abstract

Deoxynivalenol (DON) and related trichothecene mycotoxins are extensively distributed in the cereal-based food and feed stuffs worldwide. Recent climate changes and global grain trade increased chance of exposure to more DON and related toxic metabolites in poorly managed production systems. Monitoring the biological and environmental exposures to the toxins are crucial in protecting human and animals from toxicities of the hazardous contaminants in food or feeds. Exposure biomarkers including urine DON itself are prone to shift to less harmful metabolites by intestinal microbiota and liver metabolic enzymes. De-epoxyfication of DON by gut microbes such as Eubacterium strain BBSH 797 and Eubacterium sp. DSM 11798 leads to more fecal secretion of DOM-1. By contrast, most of plant-derived DON-glucoside is also easily catabolized to free DON by gut microbes, which produces more burden to body. Phase 2 hepatic metabolism also contributes to the glucuronidation of DON, which can be useful urine biomarkers. However, chemical modification could be very typical depending on the anthropologic or genetic background, luminal bacteria, and hepatic metabolic enzyme susceptibility to the toxins in the diet. After toxin exposure, effect biomarkers are also important in estimating the linkage and mechanisms of foodborne diseases in human and animal population. Most prominent adverse effects are demonstrated in the DON-induced immunological and behavioral disorders. For instance, acutely elevated interleukin-8 from insulted gut exposed to dietaty DON is a dominant clinical biomarker in human and animals. Moreover, subchronic exposure to the toxins is associated with high levels of serum IgA, a biological mediator of IgA nephritis. In particular, anorexia monitoring using mouse models are recently developed to monitor the biological activities of DON-induced feed refusal. It is also mechanistically linked to alteration of serotoin and peptide YY, which are promising biomarkers of neurological disorders by the toxins. As animal-alternative biomonitoring, huamn enterocyte-based assay has been developed and more realistic gut mimetic models would be useful in monitoring the effect biomarkers in resposne to toxic contaminants in the future investigations.

Keywords

References

  1. Miller, J.D. Aspects of the ecology of Fusarium toxins in cereals. Adv. Exp. Med. Biol. 504, 19-27 (2002). https://doi.org/10.1007/978-1-4615-0629-4_3
  2. Miller, J.D. Mycotoxins in small grains and maize: old problems, new challenges. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25, 219-230 (2008). https://doi.org/10.1080/02652030701744520
  3. Pieters, M.N., Bakker, M. Slob, W. Reduced intake of deoxynivalenol in The Netherlands: a risk assessment update. Toxicol. Lett. 153, 145-153 (2004). https://doi.org/10.1016/j.toxlet.2004.04.029
  4. Pestka, J.J., Islam, Z.Amuzie, C.J. Immunochemical assessment of deoxynivalenol tissue distribution following oral exposure in the mouse. Toxicol. Lett. 178, 83-87 (2008). https://doi.org/10.1016/j.toxlet.2008.02.005
  5. Fiocchi, C. Towards a 'cure' for IBD. Dig. Dis. 30, 428-433 (2012). https://doi.org/10.1159/000338148
  6. Prelusky, D.B., Veira, D.M., Trenholm, H.L.Foster, B.C. Metabolic fate and elimination in milk, urine and bile of deoxynivalenol following administration to lactating sheep. J. Environ. Sci. Health B. 22, 125-148 (1987). https://doi.org/10.1080/03601238709372550
  7. Swanson, S.P., Dahlem, A.M., Rood, H.D., Jr., Cote, L.M., Buck, W.B.Yoshizawa, T. Gas chromatographic analysis of milk for deoxynivalenol and its metabolite DOM-1. J. Assoc. Off. Anal. Chem. 69, 41-43 (1986).
  8. Berthiller, F., Dall'asta, C., Corradini, R., Marchelli, R., Sulyok, M., Krska, R., Adam, G.Schuhmacher, R. Occurrence of deoxynivalenol and its 3-beta-D-glucoside in wheat and maize. Food. Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 26, 507-511 (2009). https://doi.org/10.1080/02652030802555668
  9. Gratz, S.W., Duncan, G.Richardson, A.J. The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3- glucoside and may be responsible for urinary deepoxy-deoxynivalenol. Appl. Environ. Microbiol. 79, 1821-1825 (2013). https://doi.org/10.1128/AEM.02987-12
  10. Nagl, V., Schwartz, H., Krska, R., Moll, W.D., Knasmuller, S., Ritzmann, M., Adam, G.Berthiller, F. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in rats. Toxicol. Lett. 213, 367-373 (2012). https://doi.org/10.1016/j.toxlet.2012.07.024
  11. Lattanzio, V.M., Solfrizzo, M., De Girolamo, A., Chulze, S.N., Torres, A.M.Visconti, A. LC-MS/MS characterization of the urinary excretion profile of the mycotoxin deoxynivalenol in human and rat. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879, 707-715 (2011). https://doi.org/10.1016/j.jchromb.2011.01.029
  12. Meky, F.A., Turner, P.C., Ashcroft, A.E., Miller, J.D., Qiao, Y.L., Roth, M.J.Wild, C.P. Development of a urinary biomarker of human exposure to deoxynivalenol. Food Chem. Toxicol. 41, 265-273 (2003). https://doi.org/10.1016/S0278-6915(02)00228-4
  13. Turner, P.C., Burley, V.J., Rothwell, J.A., White, K.L., Cade, J.E.Wild, C.P. Deoxynivalenol: rationale for development and application of a urinary biomarker. Food. Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25, 864-871 (2008). https://doi.org/10.1080/02652030801895040
  14. Warth, B., Sulyok, M., Fruhmann, P., Berthiller, F., Schuhmacher, R., Hametner, C., Adam, G., Frohlich, J.Krska, R. Assessment of human deoxynivalenol exposure using an LCMS/ MS based biomarker method. Toxicol. Lett. 211, 85-90 (2012). https://doi.org/10.1016/j.toxlet.2012.02.023
  15. Turner, P.C., Burley, V.J., Rothwell, J.A., White, K.L., Cade, J.E.Wild, C.P. Dietary wheat reduction decreases the level of urinary deoxynivalenol in UK adults. J. Expo. Sci. Environ. Epidemiol. 18, 392-399 (2008). https://doi.org/10.1038/sj.jes.7500611
  16. Turner, P.C., Taylor, E.F., White, K.L., Cade, J.E.Wild, C.P. A comparison of 24 h urinary deoxynivalenol with recent v. average cereal consumption for UK adults. Br. J. Nutr. 102, 1276-1279 (2009). https://doi.org/10.1017/S0007114509990390
  17. Turner, P.C., Ji, B.T., Shu, X.O., Zheng, W., Chow, W.H., Gao, Y.T.Hardie, L.J. A biomarker survey of urinary deoxynivalenol in China: the Shanghai Women's Health Study. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 28, 1220-1223 (2011). https://doi.org/10.1080/19440049.2011.584070
  18. Awad, W.A., Ghareeb, K., Bohm, J.Zentek, J. Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food. Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 27, 510-520 (2010). https://doi.org/10.1080/19440040903571747
  19. Schatzmayr, G., Zehner, F., Taubel, M., Schatzmayr, D., Klimitsch, A., Loibner, A.P.Binder, E.M. Microbiologicals for deactivating mycotoxins. Mol. Nutr. Food Res. 50, 543-551 (2006). https://doi.org/10.1002/mnfr.200500181
  20. Awad, W.A., Bohm, J., Razzazi-Fazeli, E., Ghareeb, K. Zentek, J. Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. Poult. Sci. 85, 974-979 (2006). https://doi.org/10.1093/ps/85.6.974
  21. Awad, W.A., Bohm, J., Razzazi-Fazeli, E., Hulan, H.W. Zentek, J. Effects of deoxynivalenol on general performance and electrophysiological properties of intestinal mucosa of broiler chickens. Poult. Sci. 83, 1964-1972 (2004). https://doi.org/10.1093/ps/83.12.1964
  22. Berthiller, F., Krska, R., Domig, K.J., Kneifel, W., Juge, N., Schuhmacher, R.Adam, G. Hydrolytic fate of deoxynivalenol- 3-glucoside during digestion. Toxicol. Lett. 206, 264-267 (2011). https://doi.org/10.1016/j.toxlet.2011.08.006
  23. Hattori, M.Taylor, T.D. The human intestinal microbiome: a new frontier of human biology. DNA Res. 16, 1-12 (2009). https://doi.org/10.1093/dnares/dsn033
  24. Maul, R., Warth, B., Kant, J.S., Schebb, N.H., Krska, R., Koch, M.Sulyok, M. Investigation of the hepatic glucuronidation pattern of the Fusarium mycotoxin deoxynivalenol in various species. Chem. Res. Toxicol. 25, 2715-2717 (2012). https://doi.org/10.1021/tx300348x
  25. Uhlig, S., Ivanova, L.Faeste, C.K. Enzyme-assisted synthesis and structural characterization of the 3-, 8-, and 15-glucuronides of deoxynivalenol. J. Agric. Food Chem. 61, 2006- 2012 (2013). https://doi.org/10.1021/jf304655d
  26. Kim, E.J., Jeong, S.H., Cho, J.H., Ku, H.O., Pyo, H.M., Kang, H.G.Choi, K.H. Plasma haptoglobin and immunoglobulins as diagnostic indicators of deoxynivalenol intoxication. J. Vet. Sci. 9, 257-266 (2008). https://doi.org/10.4142/jvs.2008.9.3.257
  27. Mikami, O., Kubo, M., Murata, H., Muneta, Y., Nakajima, Y., Miyazaki, S., Tanimura, N.Katsuda, K. The effects of acute exposure to deoxynivalenol on some inflammatory parameters in miniature pigs. J. Vet. Med. Sci. 73, 665-671 (2011). https://doi.org/10.1292/jvms.10-0461
  28. Moon, Y. Ribosomal alteration-derived signals for cytokine induction in mucosal and systemic inflammation: noncanonical pathways by ribosomal inactivation. Mediators Inflamm. 2014, 708193 (2014).
  29. Moon, Y., Yang, H.Lee, S.H. Modulation of early growth response gene 1 and interleukin-8 expression by ribotoxin deoxynivalenol (vomitoxin) via ERK1/2 in human epithelial intestine 407 cells. Biochem. Biophys. Res. Commun. 362, 256-262 (2007). https://doi.org/10.1016/j.bbrc.2007.07.168
  30. Park, S.H., Do, K.H., Choi, H.J., Kim, J., Kim, K.H., Park, J., Oh, C.G.Moon, Y. Novel regulatory action of ribosomal inactivation on epithelial Nod2-linked proinflammatory signals in two convergent ATF3-associated pathways. J. Immunol. 191, 5170-5181 (2013). https://doi.org/10.4049/jimmunol.1301145
  31. Dewa, Y., Kemmochi, S., Kawai, M., Saegusa, Y., Harada, T., Shimamoto, K., Mitsumori, K., Kumagai, S., Sugita-Konishi, Y.Shibutani, M. Rapid deposition of glomerular IgA in BALB/ c mice by nivalenol and its modifying effect on high IgA strain (HIGA) mice. Exp. Toxicol. Pathol. 63, 17-24 (2011). https://doi.org/10.1016/j.etp.2009.09.002
  32. Goyarts, T., Danicke, S., Tiemann, U.Rothkotter, H.J. Effect of the Fusarium toxin deoxynivalenol (DON) on IgA, IgM and IgG concentrations and proliferation of porcine blood lymphocytes. Toxicol. In Vitro. 20, 858-867 (2006). https://doi.org/10.1016/j.tiv.2005.12.006
  33. Pestka, J.J., Moorman, M.A.Warner, R.L. Dysregulation of IgA production and IgA nephropathy induced by the trichothecene vomitoxin. Food Chem. Toxicol. 27, 361-368 (1989). https://doi.org/10.1016/0278-6915(89)90141-5
  34. Flannery, B.M., Wu, W.Pestka, J.J. Characterization of deoxynivalenol- induced anorexia using mouse bioassay. Food Chem. Toxicol. 49, 1863-1869 (2011). https://doi.org/10.1016/j.fct.2011.05.004
  35. Wu, W., Flannery, B.M., Sugita-Konishi, Y., Watanabe, M., Zhang, H.Pestka, J.J. Comparison of murine anorectic responses to the 8-ketotrichothecenes 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, fusarenon X and nivalenol. Food Chem. Toxicol. 50, 2056-2061 (2012). https://doi.org/10.1016/j.fct.2012.03.055
  36. Girardet, C., Bonnet, M.S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Roux, J., Lebrun, B., Mounien, L., Trouslard, J., Jean, A., Dallaporta, M.Troadec, J.D. Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenol: a PGE2-independent mechanism. Toxicol. Sci. 124, 179-191 (2011). https://doi.org/10.1093/toxsci/kfr219
  37. Prelusky, D.B. The effect of low-level deoxynivalenol on neurotransmitter levels measured in pig cerebral spinal fluid. J. Environ. Sci. Health B. 28, 731-761 (1993). https://doi.org/10.1080/03601239309372851
  38. Prelusky, D.B. The effect of deoxynivalenol on serotoninergic neurotransmitter levels in pig blood. J Environ Sci Health B. 29, 1203-1218 (1994). https://doi.org/10.1080/03601239409372923
  39. Prelusky, D.B., Rotter, B.A., Thompson, B.K.Trenholm, H.L. Effect of the appetite stimulant cyproheptadine on deoxynivalenol- induced reductions in feed consumption and weight gain in the mouse. J. Environ. Sci. Health B. 32, 429-448 (1997). https://doi.org/10.1080/03601239709373096
  40. Gaige, S., Bonnet, M.S., Tardivel, C., Pinton, P., Trouslard, J., Jean, A., Guzylack, L., Troadec, J.D.Dallaporta, M. c-Fos immunoreactivity in the pig brain following deoxynivalenol intoxication: focus on NUCB2/nesfatin-1 expressing neurons. Neurotoxicology. 34, 135-149 (2013). https://doi.org/10.1016/j.neuro.2012.10.020
  41. Wu, W., Bates, M.A., Bursian, S.J., Flannery, B., Zhou, H.R., Link, J.E., Zhang, H.Pestka, J.J. Peptide YY3-36 and 5- hydroxytryptamine mediate emesis induction by trichothecene deoxynivalenol (vomitoxin). Toxicol. Sci. 133, 186- 195 (2013). https://doi.org/10.1093/toxsci/kft033
  42. Widestrand, J., Lundh, T., Pettersson, H.Lindberg, J.E. Cytotoxicity of four trichothecenes evaluated by three colorimetric bioassays. Mycopathologia. 147, 149-155 (1999). https://doi.org/10.1023/A:1007127919901
  43. Shi, Y., Porter, K., Parameswaran, N., Bae, H.K.Pestka, J.J. Role of GRP78/BiP degradation and ER stress in deoxynivalenol- induced interleukin-6 upregulation in the macrophage. Toxicol. Sci. 109, 247-255 (2009). https://doi.org/10.1093/toxsci/kfp060
  44. Yang, H., Park, S.H., Choi, H.J., Do, K.H., Kim, J., An, T.J., Lee, S.H.Moon, Y. Mechanism-based alternative monitoring of endoplasmic reticulum stress by 8-keto-trichothecene mycotoxins using human intestinal epithelial cell line. Toxicol. Lett. 198, 317-323 (2010). https://doi.org/10.1016/j.toxlet.2010.07.008
  45. Diesing, A.K., Nossol, C., Danicke, S., Walk, N., Post, A., Kahlert, S., Rothkotter, H.J.Kluess, J. Vulnerability of polarised intestinal porcine epithelial cells to mycotoxin deoxynivalenol depends on the route of application. PLoS One. 6, e17472 (2011). https://doi.org/10.1371/journal.pone.0017472
  46. Akbari, P., Braber, S., Gremmels, H., Koelink, P.J., Verheijden, K.A., Garssen, J.Fink-Gremmels, J. Deoxynivalenol: a trigger for intestinal integrity breakdown. Faseb J. 28, 2414-2429 (2014). https://doi.org/10.1096/fj.13-238717
  47. Grenier, B.Applegate, T.J. Modulation of intestinal functions following mycotoxin ingestion: meta-analysis of published experiments in animals. Toxins (Basel). 5, 396-430 (2013). https://doi.org/10.3390/toxins5020396
  48. Huh, D., Kim, H.J., Fraser, J.P., Shea, D.E., Khan, M., Bahinski, A., Hamilton, G.A.Ingber, D.E. Microfabrication of human organs-on-chips. Nat. Protoc. 8, 2135-2157 (2013). https://doi.org/10.1038/nprot.2013.137